Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning Framework for the Electronic Structure of Water: Towards a Universal Model (2503.24050v2)

Published 31 Mar 2025 in physics.chem-ph, physics.atm-clus, and physics.comp-ph

Abstract: Accurately modeling the electronic structure of water across scales, from individual molecules to bulk liquid, remains a grand challenge. Traditional computational methods face a critical trade-off between computational cost and efficiency. We present an enhanced machine-learning Deep Kohn-Sham (DeePKS) method for improved electronic structure, DeePKS-ES, that overcomes this dilemma. By incorporating the Hamiltonian matrix and their eigenvalues and eigenvectors into the loss function, we establish a universal model for water systems, which can reproduce high-level hybrid functional (HSE06) electronic properties from inexpensive generalized gradient approximation (PBE) calculations. Validated across molecular clusters and liquid-phase simulations, our approach reliably predicts key electronic structure properties such as band gaps and density of states, as well as total energy and atomic forces. This work bridges quantum-mechanical precision with scalable computation, offering transformative opportunities for modeling aqueous systems in catalysis, climate science, and energy storage.

Summary

We haven't generated a summary for this paper yet.