Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perspective: Atomistic Simulations of Water and Aqueous Systems with Machine Learning Potentials (2401.17875v1)

Published 31 Jan 2024 in cond-mat.soft, physics.chem-ph, and physics.comp-ph

Abstract: As the most important solvent, water has been at the center of interest since the advent of computer simulations. While early molecular dynamics and Monte Carlo simulations had to make use of simple model potentials to describe the atomic interactions, accurate ab initio molecular dynamics simulations relying on the first-principles calculation of the energies and forces have opened the way to predictive simulations of aqueous systems. Still, these simulations are very demanding, which prevents the study of complex systems and their properties. Modern machine learning potentials (MLPs) have now reached a mature state, allowing to overcome these limitations by combining the high accuracy of electronic structure calculations with the efficiency of empirical force fields. In this Perspective we give a concise overview about the progress made in the simulation of water and aqueous systems employing MLPs, starting from early work on free molecules and clusters via bulk liquid water to electrolyte solutions and solid-liquid interfaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (324)
  1. A. Rahman and F. H. Stillinger, “Molecular dynamics study of liquid water,” J. Chem. Phys., vol. 55, no. 7, pp. 3336–3359, 1971.
  2. A. Luzar and D. Chandler, “Hydrogen-bond kinetics in liquid water,” Nature, vol. 379, no. 6560, pp. 55–57, 1996.
  3. K. A. Dill, T. M. Truskett, V. Vlachy, and B. Hribar-Lee, “Modeling water, the hydrophobic effect, and ion solvation,” Annu. Rev. Biophys. Biomol. Struct., vol. 34, no. 1, pp. 173–199, 2005. PMID: 15869376.
  4. O. Björneholm, M. H. Hansen, A. Hodgson, L.-M. Liu, D. T. Limmer, A. Michaelides, P. Pedevilla, J. Rossmeisl, H. Shen, G. Tocci, E. Tyrode, M.-M. Walz, J. Werner, and H. Bluhm, “Water at interfaces,” Chem. Rev., vol. 116, pp. 7698–7726, 07 2016.
  5. V. Rozsa, D. Pan, F. Giberti, and G. Galli, “Ab initio spectroscopy and ionic conductivity of water under earth mantle conditions,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 27, pp. 6952–6957, 2018.
  6. C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, and M. Parrinello, “Superionic and metallic states of water and ammonia at giant planet conditions,” Science, vol. 283, no. 5398, pp. 44–46, 1999.
  7. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and L. G. M. Pettersson, “Water: A tale of two liquids,” Chem. Rev., vol. 116, no. 13, pp. 7463–7500, 2016. PMID: 27380438.
  8. P. G. Debenedetti, F. Sciortino, and G. H. Zerze, “Second critical point in two realistic models of water,” Science, vol. 369, no. 6501, pp. 289–292, 2020.
  9. J. Barker and R. Watts, “Structure of water; a monte carlo calculation,” Chem. Phys. Lett., vol. 3, no. 3, pp. 144–145, 1969.
  10. C. Vega and J. L. F. Abascal, “Simulating water with rigid non-polarizable models: a general perspective,” Phys. Chem. Chem. Phys., vol. 13, pp. 19663–19688, 2011.
  11. K. Laasonen, M. Sprik, M. Parrinello, and R. Car, ““ab initio” liquid water,” J. Chem. Phys., vol. 99, no. 11, pp. 9080–9089, 1993.
  12. J. S. Rowlinson, “The lattice energy of ice and the second virial coefficient of water vapour,” Trans. Faraday Soc., vol. 47, pp. 120–129, 1951.
  13. A. Ben-Naim and F. Stillinger, “Aspects of the statistical-mechanical theory of water,” in Structure and transport processes in water and aqueous solutions (R. A. Horne, ed.), Wiley-Interscience, New York, 1972.
  14. F. H. Stillinger and A. Rahman, “Improved simulation of liquid water by molecular dynamics,” J. Chem. Phys., vol. 60, no. 4, pp. 1545–1557, 1974.
  15. John Wiley & Sons, Ltd, 1975.
  16. B. Guillot, “A reappraisal of what we have learnt during three decades of computer simulations on water,” J. Mol. Liq., vol. 101, no. 1, pp. 219–260, 2002. Molecular Liquids. Water at the New Millenium.
  17. C. Vega, J. L. F. Abascal, M. M. Conde, and J. L. Aragones, “What ice can teach us about water interactions: a critical comparison of the performance of different water models,” Faraday Discuss., vol. 141, pp. 251–276, 2009.
  18. A. V. Onufriev and S. Izadi, “Water models for biomolecular simulations,” WIREs-Comput. Mol. Sci., vol. 8, no. 2, p. e1347, 2018.
  19. G. A. Cisneros, K. T. Wikfeldt, L. Ojamäe, J. Lu, Y. Xu, H. Torabifard, A. P. Bartók, G. Csányi, V. Molinero, and F. Paesani, “Modeling molecular interactions in water: From pairwise to many-body potential energy functions,” Chem. Rev., vol. 116, no. 13, pp. 7501–7528, 2016.
  20. T. E. Gartner III, K. M. Hunter, E. Lambros, A. Caruso, M. Riera, G. R. Medders, A. Z. Panagiotopoulos, P. G. Debenedetti, and F. Paesani, “Anomalies and local structure of liquid water from boiling to the supercooled regime as predicted by the many-body mb-pol model,” J. Phys. Chem. Lett., vol. 13, no. 16, pp. 3652–3658, 2022.
  21. J. Abascal, E. Sanz, R. García Fernández, and C. Vega, “A potential model for the study of ices and amorphous water: Tip4p/ice,” J. Chem. Phys., vol. 122, no. 23, 2005.
  22. S. L. Bore, P. M. Piaggi, R. Car, and F. Paesani, “Phase diagram of the tip4p/ice water model by enhanced sampling simulations,” J. Chem. Phys., vol. 157, no. 5, 2022.
  23. P. Montero de Hijes, E. Sanz, L. Joly, C. Valeriani, and F. Caupin, “Viscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations,” J. Chem. Phys., vol. 149, no. 9, 2018.
  24. F. H. Stillinger and C. W. David, “Polarization model for water and its ionic dissociation products,” J. Chem. Phys., vol. 69, no. 4, pp. 1473–1484, 1978.
  25. L. Ojamäe, I. Shavitt, and S. J. Singer, “Potential models for simulations of the solvated proton in water,” J. Chem. Phys., vol. 109, no. 13, pp. 5547–5564, 1998.
  26. M. Raju, S.-Y. Kim, A. C. T. van Duin, and K. A. Fichthorn, “Reaxff reactive force field study of the dissociation of water on titania surfaces,” J. Phys. Chem. C, vol. 117, p. 10558, 2013.
  27. U. W. Schmitt and G. A. Voth, “Multistate empirical valence bond model for proton transport in water,” J. Phys. Chem. B, vol. 102, pp. 5547–5551, 07 1998.
  28. D. Marx, “Proton transfer 200 years after von grotthuss: Insights from ab initio simulations,” ChemPhysChem, vol. 7, pp. 1848–1870, 2006.
  29. M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, “Ab initio simulations of water and water ions,” J. Phys. Condens. Matter, vol. 6, pp. A93–A100, jun 1994.
  30. M. J. Gillan, D. Alfè, and A. Michaelides, “Perspective: How good is dft for water?,” J. Chem. Phys., vol. 144, no. 13, p. 130901, 2016.
  31. J. G. Brandenburg, A. Zen, D. Alfè, and A. Michaelides, “Interaction between water and carbon nanostructures: How good are current density functional approximations?,” J. Chem. Phys., vol. 151, no. 16, p. 164702, 2019.
  32. A. P. Gaiduk, F. Gygi, and G. Galli, “Density and compressibility of liquid water and ice from first-principles simulations with hybrid functionals,” J. Phys. Chem. Lett., vol. 6, no. 15, pp. 2902–2908, 2015.
  33. M. D. Ben, M. Schönherr, J. Hutter, and J. VandeVondele, “Bulk liquid water at ambient temperature and pressure from mp2 theory,” J. Phys. Chem. Lett., vol. 4, p. 3753, 2013.
  34. M. D. Ben, J. Hutter, and J. VandeVondele, “Probing the structural and dynamical properties of liquid water with models including non-local electron correlation,” J. Chem. Phys., vol. 143, p. 054506, 2015.
  35. B. J. Braams and J. M. Bowman, “Permutationally invariant potential energy surfaces in high dimensionality,” Int. Rev. Phys. Chem., vol. 28, pp. 577–606, 2009.
  36. G. R. Medders, V. Babin, and F. Paesani, “Development of a “first-principles” water potential with flexible monomers. iii. liquid phase properties,” J. Chem. Theory Comput., vol. 10, no. 8, pp. 2906–2910, 2014.
  37. E. Palos, S. Dasgupta, E. Lambros, and F. Paesani, “Data-driven many-body potentials from density functional theory for aqueous phase chemistry,” Chem. Phys. Rev., vol. 4, p. 011301, 2023.
  38. Q. Yu, C. Qu, P. L. Houston, A. Nandi, P. Pandey, R. Conte, and J. M. Bowman, “A status report on gold standard machine-learned potentials for water,” J. Phys. Chem. Lett., vol. 14, pp. 8077–8087, 2023.
  39. C. M. Handley and P. L. A. Popelier, “Potential energy surfaces fitted by artificial neural networks,” J. Phys. Chem. A, vol. 114, pp. 3371–3383, 2010.
  40. J. Behler, “Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations,” Phys. Chem. Chem. Phys., vol. 13, pp. 17930–17955, 2011.
  41. J. Behler, “Perspective: Machine learning potentials for atomistic simulations,” J. Chem. Phys., vol. 145, p. 170901, 2016.
  42. O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt, A. Tkatchenko, and K.-R. Müller, “Machine learning force fields,” Chem. Rev., vol. 121, no. 16, pp. 10142–10186, 2021. PMID: 33705118.
  43. P. Friederich, F. Häse, J. Proppe, and A. Aspuru-Guzik, “Machine-learned potentials for next-generation matter simulations,” Nat. Mater, vol. 20, pp. 750–761, 2021.
  44. J. Behler and G. Csányi, “Machine learning potentials for extended systems - a perspective,” Eur. Phys. J. B, vol. 94, p. 142, 2021.
  45. V. L. Deringer, M. A. Caro, and G. Csányi, “Machine learning interatomic potentials as emerging tools for materials science,” Adv. Mater., vol. 31, p. 1902765, 2019.
  46. P. O. Dral, “Quantum chemistry in the age of machine learning,” J. Phys. Chem. Lett., vol. 11, pp. 2336–2347, 2020.
  47. F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine learning for molecular simulation,” Ann. Rev. Phys. Chem., vol. 71, pp. 361–390, 2020.
  48. C. M. Handley and J. Behler, “Next generation interatomic potentials for condensed systems,” Eur. Phys. J. B, vol. 87, p. 152, 2014.
  49. J. Behler, “Four generations of high-dimensional neural network potentials,” Chem. Rev., vol. 121, no. 16, p. 10037–10072, 2021.
  50. V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and G. Csányi, “Gaussian process regression for materials and molecules,” Chem. Rev., vol. 121, pp. 10073–10141, 2021.
  51. E. Kocer, T. W. Ko, and J. Behler, “Neural network potentials: A concise overview of methods,” Annu. Rev. Phys. Chem., vol. 73, pp. 163–186, 2022.
  52. T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, “General-purpose machine learning potentials capturing nonlocal charge transfer,” Acc. Chem. Res., vol. 54, pp. 808–817, 2021.
  53. S. Käser, L. I. Vazquez-Salazar, M. Meuwly, and K. Töpfer, “Neural network potentials for chemistry: concepts, applications and prospects,” Digit. Discov., vol. 2, p. 28, 2023.
  54. A. M. Tokita and J. Behler, “Tutorial: How to train a neural network potential,” J. Chem. Phys., vol. 159, p. 121501, 2023.
  55. T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, “Neural network models of potential energy surfaces,” J. Chem. Phys., vol. 103, pp. 4129–4137, 1995.
  56. H. Gassner, M. Probst, A. Lauenstein, and K. Hermansson, “Representation of intermolecular potential functions by neural networks,” J. Phys. Chem. A, vol. 102, pp. 4596–4605, 1998.
  57. S. Lorenz, A. Groß, and M. Scheffler, “Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks,” Chem. Phys. Lett., vol. 395, pp. 210–215, 2004.
  58. J. Behler, S. Lorenz, and K. Reuter, “Representing molecule-surface interactions with symmetry-adapted neural networks,” J. Chem. Phys., vol. 127, p. 014705, 2007.
  59. A. Brown, B. J. Braams, K. Christoffel, Z. Jin, and J. M. Bowman, “Classical and quasiclassical spectral analysis of ch+5superscriptsubscriptabsent5{}_{5}^{+}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT using an ab initio potential energy surface,” J. Chem. Phys., vol. 119, pp. 8790–8793, 2003.
  60. J. Behler and M. Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Phys. Rev. Lett., vol. 98, p. 146401, 2007.
  61. J. Behler, “First principles neural network potentials for reactive simulations of large molecular and condensed systems,” Angew. Chem. Int. Ed., vol. 56, p. 12828, 2017.
  62. J. Behler, “Constructing high-dimensional neural network potentials: A tutorial review,” Int. J. Quantum Chem., vol. 115, pp. 1032–1050, 2015.
  63. J. Behler, “Representing potential energy surfaces by high-dimensional neural network potentials,” J. Phys. Condens. Matter, vol. 26, no. 18, p. 183001, 2014.
  64. J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural network potentials,” J. Chem. Phys., vol. 134, p. 074106, 2011.
  65. A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments,” Phys. Rev. B, vol. 87, p. 184115, May 2013.
  66. W. Pronobis, A. Tkatchenko, and K.-R. Müller, “Many-body descriptors for predicting molecular properties with machine learning: Analysis of pairwise and three-body interactions in molecules,” J. Chem. Theory Comput., vol. 14, no. 6, pp. 2991–3003, 2018. PMID: 29750522.
  67. F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi, and M. Ceriotti, “Physics-inspired structural representations for molecules and materials,” Chem. Rev., vol. 121, no. 16, pp. 9759–9815, 2021.
  68. R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic potentials,” Phys. Rev. B, vol. 99, p. 014104, 2019.
  69. J. S. Smith, O. Isayev, and A. E. Roitberg, “Ani-1: An extensible neural network potential with dft accuracy at force field computational cost,” Chem. Sci., vol. 8, pp. 3192–3203, 2017.
  70. L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett., vol. 120, p. 143001, 2018.
  71. H. Wang, L. Zhang, J. Han, and W. E, “Deepmd-kit: A deep learning package for many-body potential energy representation and molecular dynamics,” Comput. Phys. Commun., vol. 228, pp. 178–184, 2018.
  72. J. Han, L. Zhang, R. Car, and W. E, “Deep potential: a general representation of a many-body potential energy surface,” Commun. Comput. Phys., vol. 23, pp. 629–639, 2018.
  73. Y. Zhang, C. Hu, and B. Jiang, “Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation,” J. Phys. Chem. Lett., vol. 10, pp. 4962–4967, 2019.
  74. V. Zaverkin, D. Holzmüller, I. Steinwart, and J. Kästner, “Fast and sample-efficient interatomic neural network potentials for molecules and materials based on gaussian moments,” J. Chem. Theory Comput., vol. 17, pp. 6658–6670, 2021.
  75. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in Proceedings of the 34th International Conference on Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research, pp. 1263–1272, PMLR, 2017.
  76. K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-chemical insights from deep tensor neural networks,” Nat. Commun., vol. 8, p. 13890, 2017.
  77. K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Mueller, “Schnet - a deep learning architecture for molecules and materials,” J. Chem. Phys., vol. 148, p. 241722, 2018.
  78. R. Zubatyuk, J. S. Smith, J. Leszczynski, and O. Isayev, “Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network,” Sci. Adv., vol. 5, p. eaav6490, 2019.
  79. K. Schütt, O. Unke, and M. Gastegger, “Equivariant message passing for the prediction of tensorial properties and molecular spectra,” in Proceedings of the 38th International Conference on Machine Learning (M. Meila and T. Zhang, eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 9377–9388, PMLR, 18–24 Jul 2021.
  80. S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky, “E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials,” Nat. Commun., vol. 13, no. 1, p. 2453, 2022.
  81. A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen, M. Kornbluth, and B. Kozinsky, “Learning local equivariant representations for large-scale atomistic dynamics,” Nat. Commun., vol. 14, p. 579, 2023.
  82. I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. Csanyi, “Mace: Higher order equivariant message passing neural networks for fast and accurate force fields,” in Adv. Neural Inf. Process. Syst. (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), vol. 35, pp. 11423–11436, Curran Associates, Inc., 2022.
  83. A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev. Lett., vol. 104, p. 136403, 2010.
  84. A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments,” Phys. Rev. B, vol. 87, p. 184115, 2013.
  85. A. V. Shapeev, “Moment tensor potentials: a class of systematically improvable interatomic potentials,” Multiscale Model. Simul., vol. 14, pp. 1153–1173, 2016.
  86. A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials,” J. Comp. Phys., vol. 285, pp. 316–330, 2015.
  87. S. Yue, M. C. Muniz, M. F. C. Andrade, L. Zhang, R. Car, and A. Z. Panagiotopoulos, “When do short-range atomistic machine-learning models fall short?,” J. Chem. Phys., vol. 154, p. 034111, 2021.
  88. S. Houlding, S. Y. Liem, and P. L. A. Popelier, “A polarizable high-rank quantum topological electrostatic potential developed using neural networks: Molecular dynamics simulations on the hydrogen fluoride dimer,” Int. J. Quantum Chem., vol. 107, pp. 2817–2827, 2007.
  89. M. J. L. Mills and P. L. A. Popelier, “Polarisable multipolar electrostatics from the machine learning method kriging: an application to alanine,” Theor. Chem. Acc., vol. 131, p. 1137, 2012.
  90. C. M. Handley, G. I. Hawe, D. B. Kell, and P. L. A. Popelier, “Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning,” Phys. Chem. Chem. Phys., vol. 11, pp. 6365–6376, 2009.
  91. N. Artrith, T. Morawietz, and J. Behler, “High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide,” Phys. Rev. B, vol. 83, p. 153101, 2011.
  92. T. Morawietz, V. Sharma, and J. Behler, “A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges,” J. Chem. Phys., vol. 136, p. 064103, 2012.
  93. K. Yao, J. E. Herr, D. W. Toth, R. Mckintyre, and J. Parkhill, “The tensormol-0.1 model chemistry: a neural network augmented with long-range physics,” Chem. Sci., vol. 9, pp. 2261–2269, 2018.
  94. O. T. Unke and M. Meuwly, “Physnet: A neural network for predicting energies, forces, dipole moments, and partial charges,” J. Chem. Theory Comput., vol. 15, pp. 3678–3693, 2019.
  95. O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E. Sauceda, and K.-R. Müller, “Spookynet: Learning force fields with electronic degrees of freedom and nonlocal effects,” Nat. Commun., vol. 12, no. 1, p. 7273, 2021.
  96. T. Bereau, D. Andrienko, and O. A. von Lilienfeld, “Transferable atomic multipole machine learning models for small organic molecules,” J. Chem. Theory Comput., vol. 11, pp. 3225–3233, 2015.
  97. A. E. Sifain, N. Lubbers, B. T. Nebgen, J. S. Smith, A. Y. Lokhov, O. Isayev, A. E. Roitberg, K. Barros, and S. Tretiak, “Discovering a transferable charge assignment model using machine learning,” J. Phys. Chem. Lett., vol. 9, pp. 4495–4501, 2018.
  98. L. Zhang, H. Wang, M. C. Muniz, A. Z. Panagiotopoulos, R. Car, et al., “A deep potential model with long-range electrostatic interactions,” J. Chem. Phys., vol. 156, no. 12, 2022.
  99. M. Gastegger, J. Behler, and P. Marquetand, “Machine learning molecular dynamics for the simulation of infrared spectra,” Chem. Sci., vol. 8, pp. 6924–6935, 2017.
  100. S. A. Ghasemi, A. Hofstetter, S. Saha, and S. Goedecker, “Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network,” Phys. Rev. B, vol. 92, p. 045131, 2015.
  101. A. K. Rappe and W. A. Goddard, III, “Charge equilibration for molecular dynamics simulations,” J. Phys. Chem., vol. 95, pp. 3358–3363, 1991.
  102. X. Xie, K. A. Persson, and D. W. Small, “Incorporating electronic information into machine learning potential energy surfaces via approaching the ground-state electronic energy as a function of atom-based electronic populations,” J. Chem. Theory Comput., vol. 16, pp. 4256–4270, 2020.
  103. T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, “A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer,” Nat. Commun., vol. 12, p. 398, 2021.
  104. L. Jacobson, J. Stevenson, F. Ramezanghorbani, D. Ghoreishi, K. Leswing, E. Harder, and R. Abel, “Transferable neural network potential energy surfaces for closed-shell organic molecules: Extension to ions,” J. Chem. Theor. Comp., vol. 18, pp. 2354–2366, 2022.
  105. C. Schran, J. Behler, and D. Marx, “Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground,” J. Chem. Theory Comput., vol. 16, pp. 88–99, 2020.
  106. J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg, “Less is more: Sampling chemical space with active learning,” J. Chem. Phys., vol. 148, p. 241733, 2018.
  107. L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly accurate interatomic potentials for materials simulation,” Phys. Rev. Mater., vol. 3, p. 023804, 2019.
  108. C. Schran, F. L. Thiemann, P. Rowe, E. A. Müller, O. Marsalek, and A. Michaelides, “Machine learning potentials for complex aqueous systems made simple,” Proc. Natl. Acad. Sci. U. S. A., vol. 118, no. 38, p. e2110077118, 2021.
  109. K. T. No, B. H. Chang, S. Y. Kim, M. S. Jhon, and H. A. Scheraga, “Description of the potential energy surface of the water dimer with an artificial neural network,” Chem. Phys. Lett., vol. 271, pp. 152–156, 1997.
  110. S. Manzhos, X. Wang, R. Dawes, and T. Carrington, Jr, “A nested molecule-independent neural network approach for high-quality potential fits,” J. Phys. Chem. A, vol. 110, pp. 5295–5304, 2006.
  111. H. T. T. Nguyen and H. M. Le, “Modified feed-forward neural network structures and combined-function-derivative approximations incorporating exchange symmetry for potential energy surface fitting,” J. Phys. Chem. A, vol. 116, pp. 4629–4638, 2012.
  112. X. Huang, B. J. Braams, and J. M. Bowman, “Ab initio potential energy and dipole moment surfaces for h55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPTo+2superscriptsubscriptabsent2{}_{2}^{+}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT,” J. Chem. Phys., vol. 122, p. 044308, 2005.
  113. X. Huang, B. J. Braams, and J. M. Bowman, “Ab initio potential energy and dipole moment surfaces of (h22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTo)22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” J. Phys. Chem. A, vol. 110, pp. 445–451, 2006.
  114. X. Huang, B. J. Braams, and J. M. Bowman, “New ab initio potential energy surface and the vibration-rotation-tunneling levels of (h22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTo)22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and (d22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTo)22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” J. Chem. Phys., vol. 128, p. 034312, 2008.
  115. Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, “Full-dimensional, ab initio potential energy and dipole moment surfaces for water,” J. Chem. Phys., vol. 131, p. 054511, 2009.
  116. A. Shank, Y. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, “Accurate ab initio and “hybrid” potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer,” J. Chem. Phys., vol. 130, p. 144314, 2009.
  117. J. M. Bowman, B. J. Braams, S. Carter, C. Chen, G. Czak, B. Fu, X. Huang, E. Kamarchik, A. R. Sharma, B. C. Shepler, Y. Wang, and Z. Xie, “Ab-initio-based potential energy surfaces for complex molecules and molecular complexes,” J. Phys. Chem. Lett., vol. 1, pp. 1866–1874, 2010.
  118. Y. Wang and J. M. Bowman, “Towards an ab initio flexible potential for water, and post-harmonic quantum vibrational analysis of water clusters,” Chem. Phys. Lett., vol. 491, pp. 1–10, 2010.
  119. Z. Xie and J. M. Bowman, “Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization,” J. Chem. Theory Comp., vol. 6, p. 26, 2010.
  120. Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, “Flexible, ab initio potential, and dipole moment surfaces for water. i. tests and applications for clusters up to the 22-mer,” J. Chem. Phys., vol. 134, p. 094509, 2011.
  121. Q. Yu and J. M. Bowman, “Classical, thermostated ring polymer, and quantum vscf/vci calculations of ir spectra of h77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPTo+3superscriptsubscriptabsent3{}_{3}^{+}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and h99{}_{9}start_FLOATSUBSCRIPT 9 end_FLOATSUBSCRIPTo+4superscriptsubscriptabsent4{}_{4}^{+}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT (eigen) and comparison with experiment,” J. Phys. Chem. A, vol. 123, pp. 1399–1409, 2019.
  122. Q. Yu, C. Qu, P. L. Houston, R. Conte, A. Nandi, and J. M. Bowman, “q-aqua: A many-body ccsd(t) water potential, including fourbody interactions, demonstrates the quantum nature of water from clusters to the liquid phase,” J. Phys. Chem. Lett., vol. 13, pp. 5068–5074, 2022.
  123. C. Qu, Q. Yu, R. Conte, P. L. Houston, A. Nandi, and J. M. Bomwan, “A δ𝛿\deltaitalic_δ-machine learning approach for force fields, illustrated by a ccsd (t) 4-body correction to the mb-pol water potential,” Digit. Discov., vol. 1, no. 5, pp. 658–664, 2022.
  124. T. Morawietz and J. Behler, “A density-functional theory-based neural network potential for water clusters including van der waals corrections,” J. Phys. Chem. A, vol. 117, p. 7356, 2013.
  125. T. Morawietz and J. Behler, “A full-dimensional neural network potential-energy surface for water clusters up to the hexamer,” Z. Phys. Chem., vol. 227, pp. 1559–1581, 2013.
  126. S. K. Natarajan, T. Morawietz, and J. Behler, “Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials,” Phys. Chem. Chem. Phys., vol. 17, p. 8356, 2015.
  127. H. Zhou, Y.-J. Feng, C. Wang, T. Huang, Y.-R. Liu, S. Jiang, C.-Y. Wang, and W. Huang, “A high-accuracy machine-learning water model for exploring water nanocluster structures,” Nanoscale, vol. 13, no. 28, pp. 12212–12222, 2021.
  128. C. Schran, F. Brieuc, and D. Marx, “Converged colored noise path integral molecular dynamics study of the zundel cation down to ultralow temperatures at coupled cluster accuracy,” J. Chem. Theory Comput., vol. 14, pp. 5068–5078, 2018.
  129. C. Schran and D. Marx, “Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures,” Phys. Chem. Chem. Phys., vol. 21, pp. 24967–24975, 2019.
  130. C. Schran, F. Brieuc, and D. Marx, “Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer,” J. Chem. Phys., vol. 154, p. 051101, 2021.
  131. R. Beckmann, F. Brieuc, C. Schran, and D. Marx, “Infrared spectra at coupled cluster accuracy from neural network representations,” J. Chem. Theory Comput., vol. 18, no. 9, pp. 5492–5501, 2022.
  132. C. Schran, F. Uhl, J. Behler, and D. Marx, “High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium,” J. Chem. Phys., vol. 148, p. 102310, 2017.
  133. C. M. Handley and P. L. A. Popelier, “Dynamically polarizable water potential based on multipole moments trained by machine learning,” J. Chem. Theory Comput., vol. 5, pp. 1474–1489, 2009.
  134. S. J. Davie, N. Di Pasquale, and P. L. Popelier, “Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer,” J. Comput. Chem., vol. 37, no. 27, pp. 2409–2422, 2016.
  135. Z. E. Hughes, E. Ren, J. C. Thacker, B. C. Symons, A. F. Silva, and P. L. Popelier, “A fflux water model: Flexible, polarizable and with a multipolar description of electrostatics,” J. Comput. Chem., vol. 41, no. 7, pp. 619–628, 2020.
  136. A. Grisafi, D. M. Wilkins, G. Csányi, and M. Ceriotti, “Symmetry-adapted machine learning for tensorial properties of atomistic systems,” Phys. Rev. Lett., vol. 120, no. 3, p. 036002, 2018.
  137. V. H. A. Nguyen and A. Lunghi, “Predicting tensorial molecular properties with equivariant machine learning models,” Phys. Rev. B, vol. 105, no. 16, p. 165131, 2022.
  138. J. Schuhmacher, G. Mazzola, F. Tacchino, O. Dmitriyeva, T. Bui, S. Huang, and I. Tavernelli, “Extending the reach of quantum computing for materials science with machine learning potentials,” AIP Advances, vol. 12, no. 11, 2022.
  139. S. Bose, D. Dhawan, S. Nandi, R. R. Sarkar, and D. Ghosh, “Machine learning prediction of interaction energies in rigid water clusters,” Phys. Chem. Chem. Phys., vol. 20, no. 35, pp. 22987–22996, 2018.
  140. A. F. Silva, L. J. Duarte, and P. L. Popelier, “Contributions of iqa electron correlation in understanding the chemical bond and non-covalent interactions,” Struct. Chem., vol. 31, no. 2, pp. 507–519, 2020.
  141. L. Cheng, J. Sun, J. E. Deustua, V. C. Bhethanabotla, and T. F. Miller, “Molecular-orbital-based machine learning for open-shell and multi-reference systems with kernel addition gaussian process regression,” J. Chem. Phys., vol. 157, no. 15, 2022.
  142. L. Cheng, M. Welborn, A. S. Christensen, and T. F. Miller, “A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules,” J. Chem. Phys., vol. 150, no. 13, p. 131103, 2019.
  143. J. P. Coe, “Machine learning configuration interaction,” J. Chem. Theory Comput., vol. 14, no. 11, pp. 5739–5749, 2018.
  144. J. P. Coe, “Machine learning configuration interaction for ab initio potential energy curves,” J. Chem. Theory Comput., vol. 15, no. 11, pp. 6179–6189, 2019.
  145. F. Lu, L. Cheng, R. J. DiRisio, J. M. Finney, M. A. Boyer, P. Moonkaen, J. Sun, S. J. Lee, J. E. Deustua, T. F. Miller III, et al., “Fast near ab initio potential energy surfaces using machine learning,” J. Phys. Chem. A, vol. 126, no. 25, pp. 4013–4024, 2022.
  146. M. Welborn, L. Cheng, and T. F. Miller III, “Transferability in machine learning for electronic structure via the molecular orbital basis,” J. Chem. Theory Comput., vol. 14, no. 9, pp. 4772–4779, 2018.
  147. R. J. DiRisio, F. Lu, and A. B. McCoy, “Gpu-accelerated neural network potential energy surfaces for diffusion monte carlo,” J. Phys. Chem. A, vol. 125, no. 26, pp. 5849–5859, 2021.
  148. K.-W. Cho, K. T. No, and H. A. Scheraga, “A polarizable force field for water using an artificial neural network,” J. Mol. Struct., vol. 641, pp. 77–91, 2002.
  149. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys., vol. 79, pp. 926–935, 1983.
  150. A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi, “Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water,” Phys. Rev. B, vol. 88, p. 054104, 2013.
  151. D. Alfè, A. P. Bartók, G. Csányi, and M. J. Gillan, “Energy benchmarking with quantum monte carlo for water nano-droplets and bulk liquid water,” J. Chem. Phys., vol. 128, p. 221102, 2013.
  152. T. Morawietz, A. Singraber, C. Dellago, and J. Behler, “How van der waals interactions determine the unique properties of water,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, p. 8368, 2016.
  153. A. Singraber, R. Morawietz, J. Behler, and C. Dellago, “Density anomaly of water at negative pressures from first principles,” J. Phys.: Condens. Matter, vol. 30, p. 254005, 2018.
  154. P. Montero de Hijes, S. Romano, A. Gorfer, and C. Dellago, “The kinetics of the ice–water interface from ab initio machine learning simulations,” J. Chem. Phys., vol. 158, no. 20, 2023.
  155. B. Cheng, J. Behler, and M. Ceriotti, “Nuclear quantum effects in water at the triple point: Using theory as a link between experiments,” J. Phys. Chem. Lett., vol. 7, pp. 2210–2215, 2016.
  156. V. Kapil, J. Behler, and M. Ceriotti, “High order path integrals made easy,” J. Chem. Phys., vol. 145, p. 234103, 2016.
  157. V. Kapil, D. M. Wilkins, J. Lan, and M. Ceriotti, “Inexpensive modeling of quantum dynamics using path integral generalized langevin equation thermostats,” J. Chem. Phys., vol. 152, p. 124104, 2020.
  158. Y. Yao and Y. Kanai, “Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on scan meta-gga functional,” J. Chem. Phys., vol. 153, no. 4, 2020.
  159. C. Li and G. A. Voth, “Using machine learning to greatly accelerate path integral ab initio molecular dynamics,” J. Chem. Theor. Comp., vol. 18, pp. 599–604, 2022.
  160. B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, “Ab initio thermodynamics of liquid and solid water,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, pp. 1110–1115, 2019.
  161. Y. Yao and Y. Kanai, “Nuclear quantum effect and its temperature dependence in liquid water from random phase approximation via artificial neural network,” J. Phys. Chem. Lett., vol. 12, no. 27, pp. 6354–6362, 2021.
  162. T. Morawietz, O. Marsalek, S. R. Pattenaude, L. M. Streacker, D. Ben-Amotz, and T. E. Markland, “The interplay of structure and dynamics in the raman spectrum of liquid water over the full frequency and temperature range,” J. Phys. Chem. Lett., vol. 9, pp. 851–857, 2018.
  163. T. Morawietz, A. S. Urbina, P. K. Wise, X. Wu, W. Lu, D. Ben-Amotz, and T. E. Markland, “Hiding in the crowd: Spectral signatures of overcoordinated hydrogen bond environments,” J. Phys. Chem. Lett., vol. 10, pp. 6067–6073, 2019.
  164. Y. Zhang, S. Ye, J. Zhang, C. Hu, J. Jiang, and B. Jiang, “Efficient and accurate simulations of vibrational and electronic spectra with symmetry-preserving neural network models for tensorial properties,” J. Phys. Chem. B, vol. 124, no. 33, pp. 7284–7290, 2020.
  165. L. Zhang, H. Wang, and W. E, “Adaptive coupling of a deep neural network potential to a classical force field,” J. Chem. Phys., vol. 149, p. 154107, 2018.
  166. L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deepcg: Constructing coarse-grained models via deep neural networks,” J. Chem. Phys., vol. 149, p. 034101, 2018.
  167. C. Andreani, G. Romanelli, A. Parmentier, R. Senesi, A. I. Kolesnikov, H.-Y. Ko, M. F. C. Andrade, and R. Car, “Hydrogen dynamics in supercritical water probed by neutron scattering and computer simulations,” J. Phys. Chem. Lett., vol. 11, pp. 9461–9467, 2020.
  168. H.-Y. Ko, L. Zhang, B. Santra, H. Wang, W. E, R. A. D. Jr, and R. Car, “Isotope effects in liquid water via deep potential molecular dynamics,” Mol. Phys., vol. 117, no. 22, pp. 3269–3281, 2019.
  169. J. Xu, C. Zhang, L. Zhang, M. Chen, B. Santra, and X. Wu, “Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the scan functional,” Phys. Rev. B, vol. 102, p. 214113, 2020.
  170. J. Liu, J. Lan, and X. He, “Toward high-level machine learning potential for water based on quantum fragmentation and neural networks,” J. Phys. Chem. A, vol. 126, no. 24, pp. 3926–3936, 2022.
  171. G. M. Sommers, M. F. Calegari Andrade, L. Zhang, H. Wang, and R. Car, “Raman spectrum and polarizability of liquid water from deep neural networks,” Phys. Chem. Chem. Phys., vol. 22, pp. 10592–10602, 2020.
  172. L. Zhang, M. Chen, X. Wu, H. Wang, W. E, and R. Car, “Deep neural network for the dielectric response of insulators,” Phys. Rev. B, vol. 102, p. 041121, Jul 2020.
  173. C. Zhang, F. Tang, M. Chen, J. Xu, L. Zhang, D. Y. Qiu, J. P. Perdew, M. L. Klein, and X. Wu, “Modeling liquid water by climbing up jacob’s ladder in density functional theory facilitated by using deep neural network potentials,” J. Phys. Chem. B, vol. 125, pp. 11444–11456, 2021.
  174. A. Krishnamoorthy, K.-i. Nomura, N. Baradwaj, K. Shimamura, P. Rajak, A. Mishra, S. Fukushima, F. Shimojo, R. Kalia, A. Nakano, and P. Vashishta, “Dielectric constant of liquid water determined with neural network quantum molecular dynamics,” Phys. Rev. Lett., vol. 126, p. 216403, May 2021.
  175. Y. Shi, C. C. Doyle, and T. L. Beck, “Condensed phase water molecular multipole moments from deep neural network models trained on ab initio simulation data,” J. Phys. Chem. Lett., vol. 12, pp. 10310–10317, 2021.
  176. P. Schienbein, “Spectroscopy from machine learning by accurately representing the atomic polar tensor,” J. Chem. Theory Comput., vol. 19, no. 3, pp. 705–712, 2023.
  177. K. Inoue, Y. Litman, D. M. Wilkins, Y. Nagata, and M. Okuno, “Is unified understanding of vibrational coupling of water possible? hyper-raman measurement and machine learning spectra,” J. Phys. Chem. Lett., vol. 14, no. 12, pp. 3063–3068, 2023.
  178. P. M. Piaggi, A. Z. Panagiotopoulos, P. G. Debenedetti, and R. Car, “Phase equilibrium of water with hexagonal and cubic ice using the scan functional,” J. Chem. Theory Comp., vol. 17, pp. 3065–3077, 2021.
  179. L. Zhang, H. Wang, R. Car, and W. E, “Phase diagram of a deep potential water model,” Phys. Rev. Lett., vol. 126, p. 236001, Jun 2021.
  180. A. Reinhardt and B. Cheng, “Quantum-mechanical exploration of the phase diagram of water,” Nat. Commun., vol. 12, no. 1, p. 588, 2021.
  181. B. Cheng, M. Bethkenhagen, C. J. Pickard, and S. Hamel, “Phase behaviours of superionic water at planetary conditions,” Nature Physics, vol. 17, no. 11, pp. 1228–1232, 2021.
  182. D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, and S. Baroni, “Heat transport in liquid water from first-principles and deep neural network simulations,” Phys. Rev. B, vol. 104, p. 224202, 2021.
  183. K. Xu, Y. Hao, T. Liang, P. Ying, J. Xu, J. Wu, and Z. Fan, “Accurate prediction of heat conductivity of water by a neuroevolution potential,” J. Chem. Phys., vol. 158, no. 20, 2023.
  184. C. Malosso, L. Zhang, R. Car, S. Baroni, and D. Tisi, “Viscosity in water from first-principles and deep-neural-network simulations,” Npj Comput. Mater., vol. 8, no. 1, p. 139, 2022.
  185. Z. Chen, M. L. Berrens, K.-T. Chan, Z. Fan, and D. Donadio, “Thermodynamics of water and ice from a fast and scalable first-principles neuroevolution potential,” J. Chem. Eng. Data, 2023.
  186. D. Lu, H. Wang, M. Chen, J. Liu, L. Lin, R. Car, W. E, W. Jia, and L. Zhang, “86 pflops deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy,” Comp. Phys. Comm., vol. 259, p. 107624, 2021.
  187. X.-M. Bai and M. Li, “Test of classical nucleation theory via molecular-dynamics simulation,” J. Chem. Phys., vol. 122, no. 22, 2005.
  188. E. Sanz, C. Vega, J. Espinosa, R. Caballero-Bernal, J. Abascal, and C. Valeriani, “Homogeneous ice nucleation at moderate supercooling from molecular simulation,” J. Am. Chem. Soc., vol. 135, no. 40, pp. 15008–15017, 2013.
  189. P. M. Piaggi, J. Weis, A. Z. Panagiotopoulos, P. G. Debenedetti, and R. Car, “Homogeneous ice nucleation in an ab initio machine-learning model of water,” Proc. Natl. Acad. Sci. U. S. A., vol. 119, no. 33, p. e2207294119, 2022.
  190. M. Chen, L. Tan, H. Wang, L. Zhang, and H. Niu, “Imperfectly coordinated water molecules pave the way for homogeneous ice nucleation,” arXiv preprint arXiv:2304.12665, 2023.
  191. T. E. Gartner, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Signatures of a liquid–liquid transition in an ab initio deep neural network model for water,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 42, pp. 26040–26046, 2020.
  192. T. E. Gartner III, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Liquid-liquid transition in water from first principles,” Phys. Rev. Lett., vol. 129, no. 25, p. 255702, 2022.
  193. P. M. Piaggi, I. Gartner, Thomas E., R. Car, and P. G. Debenedetti, “Melting curves of ice polymorphs in the vicinity of the liquid–liquid critical point,” J. Chem. Phys., vol. 159, p. 054502, 08 2023.
  194. P. M. Piaggi and R. Car, “Enhancing the formation of ionic defects to study the ice ih/xi transition with molecular dynamics simulations,” Mol. Phys., vol. 0, no. 0, p. e1916634, 2021.
  195. A. O. Atsango, T. Morawietz, O. Marsalek, and T. E. Markland, “Developing machine-learned potentials to simultaneously capture the dynamics of excess protons and hydroxide ions in classical and path integral simulations,” J. Chem. Phys., vol. 159, no. 7, 2023.
  196. L. Liu, Y. Tian, X. Yang, and C. Liu, “Mechanistic insights into water autoionization through metadynamics simulation enhanced by machine learning,” Phys. Rev. Lett., vol. 131, no. 15, p. 158001, 2023.
  197. M. Calegari Andrade, R. Car, and A. Selloni, “Probing the self-ionization of liquid water with ab initio deep potential molecular dynamics,” Proc. Natl. Acad. Sci. U. S. A., vol. 120, no. 46, p. e2302468120, 2023.
  198. P. Geiger and C. Dellago, “Neural networks for local structure detection in polymorphic systems,” J. Chem. Phys., vol. 139, p. 164105, 2013.
  199. M. Fulford, M. Salvalaglio, and C. Molteni, “Deepice: A deep neural network approach to identify ice and water molecules,” J. Chem. Inf. Model., vol. 59, pp. 2141–2149, 2019.
  200. J. Huang, G. Huang, and S. Li, “A machine learning model to classify dynamic processes in liquid water,” ChemPhysChem, vol. 23, no. 1, p. e202100599, 2022.
  201. B. Monserrat, J. G. Brandenburg, E. A. Engel, and B. Cheng, “Liquid water contains the building blocks of diverse ice phases,” Nat. Commun., vol. 11, no. 1, p. 5757, 2020.
  202. F. Guidarelli Mattioli, F. Sciortino, and J. Russo, “Are neural network potentials trained on liquid states transferable to crystal nucleation? a test on ice nucleation in the mw water model,” J. Phys. Chem. B, vol. 127, no. 17, pp. 3894–3901, 2023.
  203. A. Torres, L. S. Pedroza, M. Fernandez-Serra, and A. R. Rocha, “Using neural network force fields to ascertain the quality of ab initio simulations of liquid water,” J. Phys. Chem. B, vol. 125, pp. 10772–10778, 2021.
  204. P. Montero de Hijes, C. Dellago, R. Jinnouchi, B. Schmiedmayer, and G. Kresse, “Comparing machine learning potentials for water: Kernel-based regression and behler-parrinello neural networks,” arXiv preprint arXiv:2312.15213, 2023.
  205. M. S. Gomes-Filho, A. Torres, A. Reily Rocha, and L. S. Pedroza, “Size and quality of quantum mechanical data set for training neural network force fields for liquid water,” J. Phys. Chem. B, vol. 127, no. 6, pp. 1422–1428, 2023.
  206. Z. Li, K. Meidani, P. Yadav, and A. Barati Farimani, “Graph neural networks accelerated molecular dynamics,” J. Chem. Phys., vol. 156, no. 14, 2022.
  207. G. Imbalzano, A. Anelli, D. Giofre, S. Klees, J. Behler, and M. Ceriotti, “Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials,” J. Chem. Phys., vol. 148, p. 241730, 2018.
  208. F. Guidarelli Mattioli, F. Sciortino, and J. Russo, “A neural network potential with self-trained atomic fingerprints: a test with the mw water potential,” J. Chem. Phys., vol. 158, no. 10, 2023.
  209. T. A. Young, T. Johnston-Wood, V. L. Deringer, and F. Duarte, “A transferable active-learning strategy for reactive molecular force fields,” Chem. Sci., vol. 12, no. 32, pp. 10944–10955, 2021.
  210. T. K. Patra, T. D. Loeffler, H. Chan, M. J. Cherukara, B. Narayanan, and S. K. R. S. Sankaranarayanan, “A coarse-grained deep neural network model for liquid water,” Appl. Phys. Lett., vol. 115, p. 193101, 2019.
  211. T. D. Loeffler, T. K. Patra, H. Chan, and S. K. Sankaranarayanan, “Active learning a coarse-grained neural network model for bulk water from sparse training data,” Mol. Syst. Des. Eng., vol. 5, no. 5, pp. 902–910, 2020.
  212. C. Scherer, R. Scheid, D. Andrienko, and T. Bereau, “Kernel-based machine learning for efficient simulations of molecular liquids,” J. Chem. Theory Comput., vol. 16, no. 5, pp. 3194–3204, 2020.
  213. S. Thaler and J. Zavadlav, “Learning neural network potentials from experimental data via differentiable trajectory reweighting,” Nat. Commun., vol. 12, no. 1, p. 6884, 2021.
  214. F. Musil, I. Zaporozhets, F. Noé, C. Clementi, and V. Kapil, “Quantum dynamics using path integral coarse-graining,” J. Chem. Phys., vol. 157, no. 18, 2022.
  215. T. D. Loose, P. G. Sahrmann, T. S. Qu, and G. A. Voth, “Coarse-graining with equivariant neural networks: A path toward accurate and data-efficient models,” J. Phys. Chem. B, 2023.
  216. H. Chan, M. J. Cherukara, B. Narayanan, T. D. Loeffler, C. Benmore, S. K. Gray, and S. K. R. S. Sankaranarayanan, “Machine learning coarse grained models for water,” Nat. Commun., vol. 10, no. 1, p. 379, 2019.
  217. T. D. Loeffler, H. Chan, K. Sasikumar, B. Narayanan, M. J. Cherukara, S. Gray, and S. K. R. S. Sankaranarayanan, “Teaching an old dog new tricks: Machine learning an improved tip3p potential model for liquid–vapor phase phenomena,” J. Phys. Chem. C, vol. 123, no. 36, pp. 22643–22655, 2019.
  218. H.-f. Ye, J. Wang, Y.-g. Zheng, H.-w. Zhang, and Z. Chen, “Machine learning for reparameterization of four-site water models: Tip4p-bg and tip4p-bgt,” Phys. Chem. Chem. Phys., vol. 23, no. 17, pp. 10164–10173, 2021.
  219. J. Wang, Y. Zheng, H. Zhang, and H. Ye, “Machine learning-generated tip4p-bgwt model for liquid and supercooled water,” J. Mol. Liq., vol. 367, p. 120459, 2022.
  220. B. Han, C. M. Isborn, and L. Shi, “Incorporating polarization and charge transfer into a point-charge model for water using machine learning,” J. Phys. Chem. Lett., vol. 14, no. 16, pp. 3869–3877, 2023.
  221. Y. Zhai, A. Caruso, S. L. Bore, Z. Luo, and F. Paesani, “A “short blanket” dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?,” J. Chem. Phys., vol. 158, p. 084111, 2023.
  222. M. C. Muniz, R. Car, and A. Z. Panagiotopoulos, “Neural network water model based on the mb-pol many-body potential,” J. Phys. Chem. B, 2023.
  223. S. Thaler, G. Doehner, and J. Zavadlav, “Scalable bayesian uncertainty quantification for neural network potentials: Promise and pitfalls,” J. Chem. Theory Comput., 2023.
  224. T. T. Nguyen, E. Székely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A. W. Goetz, and F. Paesani, “Comparison of permutationally invariant polynomials, neural networks, and gaussian approximation potentials in representing water interactions through many-body expansions,” J. Chem. Phys., vol. 124, p. 241725, 2018.
  225. H. Wang and W. Yang, “Force field for water based on neural network,” J. Phys. Chem. Lett., vol. 9, pp. 3232–3240, 2018.
  226. L. Yang, J. Li, F. Chen, and K. Yu, “A transferrable range-separated force field for water: Combining the power of both physically-motivated models and machine learning techniques,” J. Chem. Phys., vol. 157, no. 21, 2022.
  227. B. C. Symons and P. L. Popelier, “Application of quantum chemical topology force field fflux to condensed matter simulations: liquid water,” J. Chem. Theory Comput., vol. 18, no. 9, pp. 5577–5588, 2022.
  228. A. Konovalov, B. C. Symons, and P. L. Popelier, “On the many-body nature of intramolecular forces in fflux and its implications,” J. Comput. Chem., vol. 42, no. 2, pp. 107–116, 2021.
  229. V. Zaverkin, D. Holzmüller, R. Schuldt, and J. Kästner, “Predicting properties of periodic systems from cluster data: A case study of liquid water,” J. Chem. Phys., vol. 156, p. 114103, 2022.
  230. J. Daru, H. Forbert, J. Behler, and D. Marx, “Coupled cluster molecular dynamics of condensed phase systems enabled by machine learning potentials: Liquid water benchmark,” Phys. Rev. Lett., vol. 129, p. 226001, 2022.
  231. M. S. Chen, J. Lee, H.-Z. Ye, T. C. Berkelbach, D. R. Reichman, and T. E. Markland, “Data-efficient machine learning potentials from transfer learning of periodic correlated electronic structure methods: Liquid water at afqmc, ccsd, and ccsd (t) accuracy,” J. Chem. Theory Comput., 2023.
  232. A. Grisafi and M. Ceriotti, “Incorporating long-range physics in atomic-scale machine learning,” J. Chem. Phys., vol. 151, no. 20, 2019.
  233. A. Gao and R. C. Remsing, “Self-consistent determination of long-range electrostatics in neural network potentials,” Nat. Commun., vol. 13, no. 1, p. 1572, 2022.
  234. H. S. Dhattarwal, A. Gao, and R. C. Remsing, “Dielectric saturation in water from a long-range machine learning model,” J. Phys. Chem. B, vol. 127, no. 16, pp. 3663–3671, 2023.
  235. T. Plé, L. Lagardère, and J.-P. Piquemal, “Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects,” arXiv preprint arXiv:2301.08734, 2023.
  236. D. P. Kovacs, I. Batatia, E. S. Arany, and G. Csanyi, “Evaluation of the mace force field architecture: from medicinal chemistry to materials science,” arXiv preprint arXiv:2305.14247, 2023.
  237. D. P. Kovács, J. H. Moore, N. J. Browning, I. Batatia, J. T. Horton, V. Kapil, I.-B. Magdău, D. J. Cole, and G. Csányi, “Mace-off23: Transferable machine learning force fields for organic molecules,” arXiv preprint arXiv:2312.15211, 2023.
  238. I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R. Advincula, M. Asta, W. J. Baldwin, N. Bernstein, et al., “A foundation model for atomistic materials chemistry,” arXiv preprint arXiv:2401.00096, 2023.
  239. X. Fu, Z. Wu, W. Wang, T. Xie, S. Keten, R. Gomez-Bombarelli, and T. Jaakkola, “Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations,” arXiv preprint arXiv:2210.07237, 2022.
  240. O. Wohlfahrt, C. Dellago, and M. Sega, “Ab initio structure and thermodynamics of the rpbe-d3 water/vapor interface by neural-network molecular dynamics,” J. Chem. Phys., vol. 153, no. 14, p. 144710, 2020.
  241. E. D. Donkor, A. Laio, and A. Hassanali, “Do machine-learning atomic descriptors and order parameters tell the same story? the case of liquid water,” J. Chem. Theory Comput., 2023.
  242. M. Bonn, Y. Nagata, and E. H. Backus, “Molecular structure and dynamics of water at the water–air interface studied with surface-specific vibrational spectroscopy,” Angew. Chem. Int. Ed., vol. 54, no. 19, pp. 5560–5576, 2015.
  243. T. Ohto, K. Usui, T. Hasegawa, M. Bonn, and Y. Nagata, “Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function,” J. Chem. Phys., vol. 143, no. 12, p. 124702, 2015.
  244. S. Shepherd, J. Lan, D. M. Wilkins, and V. Kapil, “Efficient quantum vibrational spectroscopy of water with high-order path integrals: From bulk to interfaces,” J. Phys. Chem. Lett., vol. 12, pp. 9108–9114, 2021.
  245. Y. Litman, J. Lan, Y. Nagata, and D. M. Wilkins, “Fully first-principles surface spectroscopy with machine learning,” J. Phys. Chem. Lett., vol. 14, no. 36, pp. 8175–8182, 2023.
  246. S. P. Niblett, M. Galib, and D. T. Limmer, “Learning intermolecular forces at liquid–vapor interfaces,” J. Chem. Phys., vol. 155, no. 16, p. 164101, 2021.
  247. M. Sega and C. Dellago, “Long-range dispersion effects on the water/vapor interface simulated using the most common models,” J. Phys. Chem. B, vol. 121, 12 2016.
  248. I. Sanchez-Burgos, M. C. Muniz, J. R. Espinosa, and A. Z. Panagiotopoulos, “A deep potential model for liquid–vapor equilibrium and cavitation rates of water,” J. Chem. Phys., vol. 158, p. 184504, 2023.
  249. M. de la Puente and D. Laage, “How the acidity of water droplets and films is controlled by the air–water interface,” J. Am. Chem. Soc., vol. 145, pp. 25186–25194, 2023.
  250. Y. Shao, L. Knijff, F. M. Dietrich, K. Hermansson, and C. Zhang, “Modelling bulk electrolytes and electrolyte interfaces with atomistic machine learning,” Batter. Supercaps, vol. 4, pp. 1–12, 2021.
  251. M. Hellström and J. Behler, “Concentration-dependent proton transfer mechanisms in aqueous naoh solutions: From acceptor-driven to donor-driven and back,” J. Phys. Chem. Lett., vol. 7, pp. 3302–3306, 2016.
  252. M. Hellström and J. Behler, “Structure of aqueous naoh solutions: insights from neural-network-based molecular dynamics simulations,” Phys. Chem. Chem. Phys., vol. 19, p. 82, 2017.
  253. M. Hellström and J. Behler, “Proton-transfer-driven water exchange mechanism in the na+ solvation shell,” J. Phys. Chem. B, vol. 121, p. 4184, 2017.
  254. M. Hellström, M. Ceriotti, and J. Behler, “Nuclear quantum effects in sodium hydroxide solutions from neural network molecular dynamics simulations,” J. Phys. Chem. B, vol. 122, pp. 10158–10171, 2018.
  255. Y. Shao, M. Hellström, A. Yllö, J. Mindemark, K. Hermansson, J. Behler, and C. Zhang, “Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions,” Phys. Chem. Chem. Phys., vol. 22, p. 10426, 2020.
  256. N. O’Neill, C. Schran, S. J. Cox, and A. Michaelides, “Crumbling crystals: On the dissolution mechanism of nacl in water,” arXiv preprint arXiv:2211.04345, 2022.
  257. M. Xu, T. Zhu, and J. Z. Zhang, “Molecular dynamics simulation of zinc ion in water with an ab initio based neural network potential,” J. Phys. Chem. A, vol. 123, pp. 6587–6595, 2019.
  258. P. Wang, Y. Su, R. Shi, X. Huang, and J. Zhao, “Structures and spectroscopic properties of hydrated zinc (ii) ion clusters [zn2+ (h2o) n (n= 1- 8)] by ab initio study,” J. Clust. Sci., vol. 34, no. 3, pp. 1625–1632, 2023.
  259. E. Kamarchik, Y. Wang, and J. M. Bowman, “Quantum vibrational analysis and infrared spectra of microhydrated sodium ions using an ab initio potential,” J. Chem. Phys., vol. 134, p. 114311, 2011.
  260. C. Zhang, S. Yue, A. Z. Panagiotopoulos, M. L. Klein, and X. Wu, “Dissolving salt is not equivalent to applying a pressure on water,” Nat. Commun., vol. 13, p. 822, 2022.
  261. C. Zhang, S. Yue, A. Z. Panagiotopoulos, M. L. Klein, and X. Wu, “Why dissolving salt in water decreases its dielectric permittivity,” Phys. Rev. Lett., vol. 131, no. 7, p. 076801, 2023.
  262. M. Galib and D. T. Limmer, “Reactive uptake of n2o5 by atmospheric aerosol is dominated by interfacial processes,” Science, vol. 371, no. 6532, pp. 921–925, 2021.
  263. N. V. Avula, M. L. Klein, and S. Balasubramanian, “Understanding the anomalous diffusion of water in aqueous electrolytes using machine learned potentials,” J. Phys. Chem. Lett., vol. 14, pp. 9500–9507, 2023.
  264. N. Artrith and A. M. Kolpak, “Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of dft and accurate neural network potentials,” Nano Lett., vol. 14, pp. 2670–2676, 2014.
  265. S. K. Natarajan and J. Behler, “Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces,” Phys. Chem. Chem. Phys., vol. 18, p. 28704, 2016.
  266. S. Kondati Natarajan and J. Behler, “Self-diffusion of surface defects at copper-water interfaces,” J. Phys. Chem. C, vol. 121, p. 4368, 2017.
  267. V. Quaranta, M. Hellström, and J. Behler, “Proton transfer mechanisms at the water-zno interface: The role of presolvation,” J. Phys. Chem. Lett., vol. 8, p. 1476, 2017.
  268. V. Quaranta, J. Behler, and M. Hellström, “Structure and dynamics of the liquid-water/zinc-oxide interface from machine learning potential simulations,” J. Phys. Chem. C, vol. 123, p. 1293, 2019.
  269. M. F. Calegari Andrade, H.-Y. Ko, L. Zhang, R. Car, and A. Selloni, “Free energy of proton transfer at the water–tio2 interface from ab initio deep potential molecular dynamics,” Chem. Sci., vol. 11, pp. 2335–2341, 2020.
  270. B. Wen, M. F. C. Andrade, L.-M. Liu, and A. Selloni, “Water dissociation at the water–rutile tio2(110) interface from ab initio-based deep neural network simulations,” Proc. Natl. Acad. Sci. U. S. A., vol. 120, p. e2212250120, 2023.
  271. Y.-B. Zhuang, R.-H. Bi, and J. Cheng, “Resolving the odd-even oscillation of water dissociation at rutile tio2(110)-water interface by machine learning accelerated molecular dynamics,” J. Chem. Phys., vol. 157, p. 164701, 2022.
  272. V. Quaranta, M. Hellström, J. Behler, J. Kullgren, P. Mitev, and K. Hermansson, “Maximally resolved anharmonic oh vibrational spectrum of the water/zno(10-10) interface from a high-dimensional neural network potential,” J. Chem. Phys., vol. 148, p. 241720, 2018.
  273. M. Hellström, V. Quaranta, and J. Behler, “One-dimensional vs. two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces,” Chem. Sci., vol. 10, p. 1232, 2019.
  274. M. Eckhoff and J. Behler, “Insights into lithium manganese oxide-water interfaces using machine learning potentials,” J. Chem. Phys., vol. 155, p. 244703, 2021.
  275. A. Nakanishi, S. Kasamatsu, J. Haruyama, and O. Sugino, “Structural analysis of zirconium oxynitride/water interface using neural network potential,” arXiv preprint arXiv:2307.11296, 2023.
  276. C. R. O’Connor, M. F. Calegari Andrade, A. Selloni, and G. A. Kimmel, “Elucidating the water–anatase tio2 (101) interface structure using infrared signatures and molecular dynamics,” J. Chem. Phys., vol. 159, no. 10, 2023.
  277. Z. Li, J. Wang, C. Yang, L. Liu, and J.-Y. Yang, “Thermal transport across TiO2–H2O interface involving water dissociation: Ab initio-assisted deep potential molecular dynamics,” J. Chem. Phys., vol. 159, p. 144701, 10 2023.
  278. Z. Zeng, F. Wodaczek, K. Liu, F. Stein, J. Hutter, J. Chen, and B. Cheng, “Mechanistic insight on water dissociation on pristine low-index tio2 surfaces from machine learning molecular dynamics simulations,” Nat. Commun., vol. 14, no. 1, p. 6131, 2023.
  279. Z. Ding and A. Selloni, “Modeling the aqueous interface of amorphous tio2 using deep potential molecular dynamics,” J. Chem. Phys., vol. 159, no. 2, 2023.
  280. A. E. G. Mikkelsen, J. Schiøtz, T. Vegge, and K. W. Jacobsen, “Is the water/pt(111) interface ordered at room temperature?,” J. Chem. Phys., vol. 155, p. 224701, 2021.
  281. A. E. G. Mikkelsen, H. H. Kristoffersen, J. Schiøtz, T. Vegge, H. A. Hansen, and K. W. Jacobsen, “Structure and energetics of liquid water-hydroxyl layers on pt(111),” Phys. Chem. Chem. Phys., vol. 24, pp. 9885–9890, 2022.
  282. P. Schienbein and J. Blumberger, “Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid dft accuracy using committee neural network potentials,” Phys. Chem. Chem. Phys., vol. 24, no. 25, pp. 15365–15375, 2022.
  283. L. Li, M. F. Calegari Andrade, R. Car, A. Selloni, and E. A. Carter, “Characterizing structure-dependent tis2/water interfaces using deep-neural-network-assisted molecular dynamics,” J. Phys. Chem. C, 2023.
  284. A. S. Raman and A. Selloni, “Acid–base chemistry of a model iro2 catalytic interface,” J. Phys. Chem. Lett., vol. 14, pp. 7787–7794, 2023.
  285. X.-T. Fan, X.-J. Wen, Y.-B. Zhuang, and J. Cheng, “Molecular insight into the gap(110)-water interface using machine learning accelerated molecular dynamics,” J. Energy Chem., vol. in press, 2023.
  286. P. M. Piaggi, A. Selloni, A. Panagiotopoulos, R. Car, and P. G. Debenedetti, “A first-principles machine-learning force field for heterogeneous ice nucleation on microcline feldspar,” Faraday Discuss., 2023.
  287. Z. Li, X. Tan, Z. Fu, L. Liu, and J.-Y. Yang, “Thermal transport across copper–water interfaces according to deep potential molecular dynamics,” Phys. Chem. Chem. Phys., vol. 25, no. 9, pp. 6746–6756, 2023.
  288. X. Yang, A. Bhowmik, T. Vegge, and H. A. Hansen, “Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at au–water interfaces,” Chem. Sci., vol. 14, no. 14, pp. 3913–3922, 2023.
  289. X. Li, W. Paier, and J. Paier, “Machine learning in computational surface science and catalysis: Case studies on water and metal–oxide interfaces,” Front. Chem., vol. 8, p. 601029, 2020.
  290. H. Ghorbanfekr, J. Behler, and F. M. Peeters, “Insights into water permeation through hbn nanocapillaries by ab initio machine learning molecular dynamics simulations,” J. Phys. Chem. Lett., vol. 11, p. 7363, 2020.
  291. W. Zhao, H. Qiu, and W. Guo, “A deep neural network potential for water confined in graphene nanocapillaries,” J. Phys. Chem. C, 2022.
  292. D. Liu, J. Wu, and D. Lu, “Transferability evaluation of the deep potential model for simulating water-graphene confined system,” J. Chem. Phys., vol. 159, no. 4, 2023.
  293. V. Kapil, C. Schran, A. Zen, J. Chen, C. J. Pickard, and A. Michaelides, “The first-principles phase diagram of monolayer nanoconfined water,” Nature, vol. 609, no. 7927, pp. 512–516, 2022.
  294. F. L. Thiemann, C. Schran, P. Rowe, E. A. Müller, and A. Michaelides, “Water flow in single-wall nanotubes: Oxygen makes it slip, hydrogen makes it stick,” ACS Nano, vol. 16, pp. 10775–10782, 2022.
  295. Z. Cao, Y. Wang, C. Lorsung, and A. Barati Farimani, “Neural network predicts ion concentration profiles under nanoconfinement,” J. Chem. Phys., vol. 159, no. 9, 2023.
  296. L. Shen and W. Yang, “Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks,” J. Chem. Theor. Comp., vol. 14, pp. 1442–1455, 2018.
  297. M. Yang, L. Bonati, D. Polino, and M. Parrinello, “Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water,” Catal. Today, vol. 387, pp. 143–149, 2022.
  298. T. Devergne, T. Magrino, F. Pietrucci, and A. M. Saitta, “Combining machine learning approaches and accurate ab initio enhanced sampling methods for prebiotic chemical reactions in solution,” J. Chem. Theor. Comp., vol. 18, pp. 5410–5421, 2022.
  299. X. Pan, J. Yang, R. Van, E. Epifanovsky, J. Ho, J. Huang, J. Pu, Y. Mei, K. Nam, and Y. Shao, “Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions,” J. Chem. Theor. Comp., vol. 17, pp. 5745–5758, 2021.
  300. J. Lan, V. Kapil, P. Gasparotto, M. Ceriotti, M. Iannuzzi, and V. V. Rybkin, “Simulating the ghost: quantum dynamics of the solvated electron,” Nat. Commun., vol. 12, no. 1, p. 766, 2021.
  301. W.-K. Chen, W.-H. Fang, and G. Cui, “Integrating machine learning with the multilayer energy-based fragment method for excited states of large systems,” J. Phys. Chem. Lett., vol. 10, no. 24, pp. 7836–7841, 2019.
  302. J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron, G. De Fabritiis, F. Noé, and C. Clementi, “Machine learning of coarse-grained molecular dynamics force fields,” ACS Cent. Sci., vol. 5, no. 5, pp. 755–767, 2019.
  303. B. E. Husic, N. E. Charron, D. Lemm, J. Wang, A. Pérez, M. Majewski, A. Krämer, Y. Chen, S. Olsson, G. de Fabritiis, et al., “Coarse graining molecular dynamics with graph neural networks,” J. Chem. Phys., vol. 153, no. 19, 2020.
  304. A. krämer, A. E. Durumeric, N. E. Charron, Y. Chen, C. Clementi, and F. Noé, “Statistically optimal force aggregation for coarse-graining molecular dynamics,” J. Phys. Chem. Lett., vol. 14, no. 17, pp. 3970–3979, 2023.
  305. S. Yao, R. Van, X. Pan, J. H. Park, Y. Mao, J. Pu, Y. Mei, and Y. Shao, “Machine learning based implicit solvent model for aqueous-solution alanine dipeptide molecular dynamics simulations,” RSC Adv., vol. 13, no. 7, pp. 4565–4577, 2023.
  306. J. R. Cendagorta, H. Shen, Z. Bacic, and M. E. Tuckerman, “Enhanced sampling path integral methods using neural network potential energy surfaces with application to diffusion in hydrogen hydrates,” Adv. Theory Sim., vol. 4, p. 2000258, 2021.
  307. J. Yang, Y. Cong, Y. Li, and H. Li, “Machine learning approach based on a range-corrected deep potential model for efficient vibrational frequency computation,” J. Chem. Theory Comput., vol. 19, no. 18, pp. 6366–6374, 2023.
  308. L. Böselt, M. Thürlemann, and S. Riniker, “Machine learning in qm/mm molecular dynamics simulations of condensed-phase systems,” J. Chem. Theory Comput., vol. 17, no. 5, pp. 2641–2658, 2021.
  309. A. Hofstetter, L. Böselt, and S. Riniker, “Graph-convolutional neural networks for (qm) ml/mm molecular dynamics simulations,” Phys. Chem. Chem. Phys., vol. 24, no. 37, pp. 22497–22512, 2022.
  310. S. M. Salehi, S. Käser, K. Töpfer, P. Diamantis, R. Pfister, P. Hamm, U. Rothlisberger, and M. Meuwly, “Hydration dynamics and ir spectroscopy of 4-fluorophenol,” Phys. Chem. Chem. Phys., vol. 24, no. 42, pp. 26046–26060, 2022.
  311. M. Xu, T. Zhu, and J. Z. Zhang, “Automatically constructed neural network potentials for molecular dynamics simulation of zinc proteins,” Front. Chem., vol. 9, p. 692200, 2021.
  312. J. R. Loeffler, M. L. Fernández-Quintero, F. Waibl, P. K. Quoika, F. Hofer, M. Schauperl, and K. R. Liedl, “Conformational shifts of stacked heteroaromatics: vacuum vs. water studied by machine learning,” Front. Chem., vol. 9, p. 641610, 2021.
  313. P. Gao, X. Yang, Y.-H. Tang, M. Zheng, A. Andersen, V. Murugesan, A. Hollas, and W. Wang, “Graphical gaussian process regression model for aqueous solvation free energy prediction of organic molecules in redox flow batteries,” Phys. Chem. Chem. Phys., vol. 23, no. 43, pp. 24892–24904, 2021.
  314. A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf, “Electron density learning of non-covalent systems,” Chem. Sci., vol. 10, pp. 9424–9432, 2019.
  315. A. Grisafi and M. Ceriotti, “Incorporating long-range physics in atomic-scale machine learning,” J. Chem. Phys., vol. 151, p. 204105, 2019.
  316. T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, “Accurate fourth-generation machine learning potentials by electrostatic embedding,” J. Chem. Theory Comput., vol. 19, pp. 3567–3579, 2023.
  317. F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine learning for molecular simulation,” Annu. Rev. Phys. Chem., vol. 71, no. 1, pp. 361–390, 2020. PMID: 32092281.
  318. P. Geiger and C. Dellago, “Neural networks for local structure detection in polymorphic systems,” J. Chem. Phys., vol. 139, p. 164105, 10 2013.
  319. M. Fulford, M. Salvalaglio, and C. Molteni, “Deepice: A deep neural network approach to identify ice and water molecules,” J. Chem. Inf. Model., vol. 59, no. 5, pp. 2141–2149, 2019. PMID: 30875217.
  320. F. Noé, S. Olsson, J. Köhler, and H. Wu, “Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning,” Science, vol. 365, no. 6457, p. eaaw1147, 2019.
  321. P. Wirnsberger, G. Papamakarios, B. Ibarz, S. Racanière, A. J. Ballard, A. Pritzel, and C. Blundell, “Normalizing flows for atomic solids,” Mach. learn.: sci. technol., vol. 3, p. 025009, may 2022.
  322. C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, S. Shysheya, J. Crabbé, L. Sun, J. Smith, et al., “Mattergen: a generative model for inorganic materials design,” arXiv preprint arXiv:2312.03687, 2023.
  323. Z. Zou, E. R. Beyerle, S.-T. Tsai, and P. Tiwary, “Driving and characterizing nucleation of urea and glycine polymorphs in water,” Proc. Natl. Acad. Sci. U.S.A., vol. 120, no. 7, p. e2216099120, 2023.
  324. H. Jung, R. Covino, A. Arjun, C. Leitold, C. Dellago, P. G. Bolhuis, and G. Hummer, “Machine-guided path sampling to discover mechanisms of molecular self-organization,” Nat. Comput. Sci., vol. 3, no. 4, pp. 334–345, 2023.

Summary

  • The paper highlights a transition from empirical and ab initio methods to machine learning potentials that combine high accuracy with computational efficiency.
  • It details the evolution from basic neural network approaches to advanced HDNNPs capable of simulating water clusters, bulk water, ice, and interfaces.
  • Key implications include the ability to conduct large-scale, precise simulations that can guide future advancements in computational chemistry and materials science.

Atomistic Simulations of Water and Aqueous Systems with Machine Learning Potentials

The paper "Perspective: Atomistic Simulations of Water and Aqueous Systems with Machine Learning Potentials" provides a comprehensive overview of advancements in the simulation of water and aqueous systems utilizing machine learning potentials (MLPs). This paper explores the transition from empirical and ab initio methods to the current state-of-the-art machine learning approaches that offer both accuracy and computational efficiency.

Methodological Advancements

The transition from simple model potentials to ab initio molecular dynamics has significantly advanced the predictive capabilities for studying aqueous systems. However, the computational expense of ab initio methods restricts their applicability to larger and more complex systems. Modern machine learning potentials have emerged as a solution to overcome these limitations, marrying the high accuracy of electronic structure calculations with the efficiency of empirical force fields.

Several key methodologies have marked the evolution of MLPs. Initially, the use of neural network potentials, specifically those founded on density functional theory (DFT), addressed the complexity of water interactions at a molecular level. With the advent of high-dimensional neural network potentials (HDNNPs) and other machine learning-based approaches, extensive simulations of systems containing up to thousands of atoms have become feasible. These methods have been expanded to explicitly include long-range interactions, such as electrostatics and dispersion forces, leading to third and fourth-generation MLPs capable of modeling charge transfer and intricate chemical reactions.

Applications and Implications

The paper articulates the application of MLPs across a spectrum of aqueous systems ranging from individual water clusters to bulk water, interfaces, electrolytes, and solid-liquid interactions:

  • Water Clusters: The paper of both neutral and protonated clusters has been crucial for developing first-generation MLPs, highlighting the necessity for high-level electronic structure calculations to accurately describe diverse structural configurations.
  • Bulk Water and Ice: MLPs have provided insights into thermodynamic anomalies, such as the peculiar density behavior of water, while capturing nuclear quantum effects and thermal properties with unprecedented detail. The potential to simulate phase transitions, including ice nucleation, has been significantly enhanced.
  • Interfaces and Surfaces: Studying the vapor-liquid and solid-liquid interfaces is essential for understanding catalysis and electrochemistry. Machine learning potentials facilitate the simulation of complex water behavior at these interfaces, yielding insights into phenomena like proton transfer and chemical reactivity not accessible through empirical models.
  • Electrolyte Solutions: For solutions, MLPs have improved the understanding of ion-specific effects, structural dynamics, and thermodynamic properties at varying concentrations.

Theoretical and practical implications of the research include the ability to carry out large-scale simulations with ab initio accuracy, which has been previously unattainable due to computational constraints. The demonstrated improvements in the accuracy of MLPs also allow for rigorous testing of the predicted properties against experimental data, potentially guiding the development of more accurate electronic structure methods.

Future Directions

The future of MLPs lies in further integration of physical insights into machine learning frameworks to enhance their robustness and transferability across diverse conditions, including varied thermodynamic states and complex chemical environments. Additionally, leveraging active learning techniques can ensure the efficient generation of training data, expanding the applicability of these models.

Moreover, incorporating generative models and neural architecture innovations, such as message passing neural networks, can further broaden the utility of MLPs in simulating an even wider array of chemical processes and phase behavior in aqueous systems.

In conclusion, the paper offers a detailed perspective on how machine learning potentials are reshaping atomistic simulations of water, emphasizing their role in bridging accuracy and efficiency, and setting the stage for future developments in computational chemistry and materials science.