Function Fitting Based on Kolmogorov-Arnold Theorem and Kernel Functions (2503.23038v1)
Abstract: This paper proposes a unified theoretical framework based on the Kolmogorov-Arnold representation theorem and kernel methods. By analyzing the mathematical relationship among kernels, B-spline basis functions in Kolmogorov-Arnold Networks (KANs) and the inner product operation in self-attention mechanisms, we establish a kernel-based feature fitting framework that unifies the two models as linear combinations of kernel functions. Under this framework, we propose a low-rank Pseudo-Multi-Head Self-Attention module (Pseudo-MHSA), which reduces the parameter count of traditional MHSA by nearly 50\%. Furthermore, we design a Gaussian kernel multi-head self-attention variant (Gaussian-MHSA) to validate the effectiveness of nonlinear kernel functions in feature extraction. Experiments on the CIFAR-10 dataset demonstrate that Pseudo-MHSA model achieves performance comparable to the ViT model of the same dimensionality under the MAE framework and visualization analysis reveals their similarity of multi-head distribution patterns. Our code is publicly available.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.