Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Uncertainty-Aware Graph Self-Training with Expectation-Maximization Regularization (2503.22744v1)

Published 26 Mar 2025 in cs.LG and stat.ML

Abstract: In this paper, we propose a novel \emph{uncertainty-aware graph self-training} approach for semi-supervised node classification. Our method introduces an Expectation-Maximization (EM) regularization scheme to incorporate an uncertainty mechanism during pseudo-label generation and model retraining. Unlike conventional graph self-training pipelines that rely on fixed pseudo-labels, our approach iteratively refines label confidences with an EM-inspired uncertainty measure. This ensures that the predictive model focuses on reliable graph regions while gradually incorporating ambiguous nodes. Inspired by prior work on uncertainty-aware self-training techniques~\cite{wang2024uncertainty}, our framework is designed to handle noisy graph structures and feature spaces more effectively. Through extensive experiments on several benchmark graph datasets, we demonstrate that our method outperforms strong baselines by a margin of up to 2.5\% in accuracy while maintaining lower variance in performance across multiple runs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube