Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Exploring the Effectiveness of Multi-stage Fine-tuning for Cross-encoder Re-rankers (2503.22672v1)

Published 28 Mar 2025 in cs.IR and cs.AI

Abstract: State-of-the-art cross-encoders can be fine-tuned to be highly effective in passage re-ranking. The typical fine-tuning process of cross-encoders as re-rankers requires large amounts of manually labelled data, a contrastive learning objective, and a set of heuristically sampled negatives. An alternative recent approach for fine-tuning instead involves teaching the model to mimic the rankings of a highly effective LLM using a distillation objective. These fine-tuning strategies can be applied either individually, or in sequence. In this work, we systematically investigate the effectiveness of point-wise cross-encoders when fine-tuned independently in a single stage, or sequentially in two stages. Our experiments show that the effectiveness of point-wise cross-encoders fine-tuned using contrastive learning is indeed on par with that of models fine-tuned with multi-stage approaches. Code is available for reproduction at https://github.com/fpezzuti/multistage-finetuning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com