Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders (2404.06912v3)
Abstract: Existing cross-encoder re-rankers can be categorized as pointwise, pairwise, or listwise models. Pair- and listwise models allow passage interactions, which usually makes them more effective than pointwise models but also less efficient and less robust to input order permutations. To enable efficient permutation-invariant passage interactions during re-ranking, we propose a new cross-encoder architecture with inter-passage attention: the Set-Encoder. In Cranfield-style experiments on TREC Deep Learning and TIREx, the Set-Encoder is as effective as state-of-the-art listwise models while improving efficiency and robustness to input permutations. Interestingly, a pointwise model is similarly effective, but when additionally requiring the models to consider novelty, the Set-Encoder is more effective than its pointwise counterpart and retains its advantageous properties compared to other listwise models. Our code and models are publicly available at https://github.com/webis-de/set-encoder.
- Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval. In Proceedings of EMNLP-IJCNLP 2019. Association for Computational Linguistics, Hong Kong, China, 3490–3496. https://doi.org/10.18653/v1/D19-1352
- Shallow Pooling for Sparse Labels. Information Retrieval Journal 25 (2022), 365–385. https://doi.org/10.1007/s10791-022-09411-0
- Overview of Touché 2022: Argument Retrieval. In Proceedings of CLEF 2022 (Lecture Notes in Computer Science, Vol. 13390). Springer International Publishing, Bologna, Italy, 311–336. https://doi.org/10.1007/978-3-031-13643-6_21
- Overview of Touché 2021: Argument Retrieval. In Proceedings of CLEF 2021 (Lecture Notes in Computer Science, Vol. 12880). Springer International Publishing, Virtual Event, 450–467. https://doi.org/10.1007/978-3-030-85251-1_28
- A Full-Text Learning to Rank Dataset for Medical Information Retrieval. In Proceedings of ECIR 2016 (Lecture Notes in Computer Science, Vol. 9626). Springer International Publishing, Padua, Italy, 716–722. https://doi.org/10.1007/978-3-319-30671-1_58
- Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems 30, 1 (April 1998), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X
- Christopher J C Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Technical Report MSR-TR-2010-82. Microsoft Research, Redmond, WA. 19 pages. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf
- The TREC 2006 Terabyte Track. In Proceedings of TREC 2006 (NIST Special Publication, Vol. 500–272). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 14. http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf
- RankFormer: Listwise Learning-to-Rank Using Listwide Labels.. In Proceedings of KDD 2023. Association for Computational Linguistics, Long Beach, CA, USA, 3762–3773. https://doi.org/10.1145/3580305.3599892
- ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.. In Proceedings of ICLR 2020. OpenReview.net, Addis Ababa, Ethiopia, 14.
- Overview of the TREC 2004 Terabyte Track.. In Proceedings of TREC 2004 (NIST Special Publication, Vol. 500–261). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 9. http://trec.nist.gov/pubs/trec13/papers/TERA.OVERVIEW.pdf
- Overview of the TREC 2009 Web Track.. In Proceedings of TREC 2009 (NIST Special Publication, Vol. 500–278). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 9. http://trec.nist.gov/pubs/trec18/papers/WEB09.OVERVIEW.pdf
- Overview of the TREC 2010 Web Track.. In Proceedings of TREC 2010 (NIST Special Publication, Vol. 500–294). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 9. https://trec.nist.gov/pubs/trec19/papers/WEB.OVERVIEW.pdf
- Overview of the TREC 2011 Web Track.. In Proceedings of TREC 2011 (NIST Special Publication, Vol. 500–296). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 9. http://trec.nist.gov/pubs/trec20/papers/WEB.OVERVIEW.pdf
- Overview of the TREC 2012 Web Track.. In Proceedings of TREC 2012 (NIST Special Publication, Vol. 500–298). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 8. http://trec.nist.gov/pubs/trec21/papers/WEB12.overview.pdf
- The TREC 2005 Terabyte Track.. In Proceedings of TREC 2005 (NIST Special Publication, Vol. 500–272). National Institute of Standards and Technology, Gaithersburg, Maryland, USA,, 11. http://trec.nist.gov/pubs/trec14/papers/TERABYTE.OVERVIEW.pdf
- Cyril W. Cleverdon. 1991. The Significance of the Cranfield Tests on Index Languages.. In Proceedings of SIGIR 1991. Association for Computing Machinery, Chicago, Illinois, USA, 3–12. https://doi.org/10.1145/122860.122861
- TREC 2013 Web Track Overview. In Proceedings of TREC 2013 (NIST Special Publication, Vol. 500-302).
- TREC 2014 Web Track Overview. In Proceedings of TREC 2014 (NIST Special Publication, Vol. 500-308).
- Nick Craswell and David Hawking. 2002. Overview of the TREC-2002 Web Track.. In Proceedings of TREC 2002 (NIST Special Publication, Vol. 500–251). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 10. http://trec.nist.gov/pubs/trec11/papers/WEB.OVER.pdf
- Nick Craswell and David Hawking. 2004. Overview of the TREC 2004 Web Track.. In Proceedings of TREC 2004 (NIST Special Publication, Vol. 500–261). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 9. http://trec.nist.gov/pubs/trec13/papers/WEB.OVERVIEW.pdf
- Overview of the TREC 2003 Web Track.. In Proceedings of TREC 2003 (NIST Special Publication, Vol. 500–255). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 78–92. http://trec.nist.gov/pubs/trec12/papers/WEB.OVERVIEW.pdf
- Overview of the TREC 2020 Deep Learning Track. In Proceedings of TREC 2020 (NIST Special Publication, Vol. 1266). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 13. https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
- Overview of the TREC 2019 Deep Learning Track. In Proceedings of TREC 2019 (NIST Special Publication, Vol. 500–331). National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 22. https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf
- Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. arXiv. https://doi.org/10.48550/arXiv.2307.08691
- FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. In Proceedings of NeurIPS 2022. 16344–16359.
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-HLT 2019. 4171–4186. https://doi.org/10.18653/v1/N19-1423
- Perspectives on Large Language Models for Relevance Judgment. In Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR 2023), Masaharu Yoshioka, Julia Kiseleva, and Mohammad Aliannejadi (Eds.). ACM, Taipei, Taiwan, 39–50. https://dl.acm.org/doi/10.1145/3578337.3605136
- William Falcon and The PyTorch Lightning team. 2023. PyTorch Lightning. https://doi.org/10.5281/zenodo.7859091
- The Information Retrieval Experiment Platform. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, Taipei Taiwan, 2826–2836. https://doi.org/10.1145/3539618.3591888
- Rethink Training of BERT Rerankers in Multi-stage Retrieval Pipeline. In Proceedings of ECIR 2021. 280–286. https://doi.org/10.1007/978-3-030-72240-1_26
- Sparse Pairwise Re-ranking with Pre-trained Transformers. In Proceedings of the 2022 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’22). New York, NY, USA, 72–80. https://doi.org/10.1145/3539813.3545140
- ANTIQUE: A Non-factoid Question Answering Benchmark. In Proceedings of ECIR 2020. 166–173.
- TREC 2004 Genomics Track Overview. In Proceedings of TREC 2004 (NIST Special Publication, Vol. 500-261).
- TREC 2005 Genomics Track Overview. In Proceedings of TREC 2005 (NIST Special Publication, Vol. 500-266).
- Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation. https://doi.org/10.48550/arXiv.2010.02666 arXiv:2010.02666
- FiE: Building a Global Probability Space by Leveraging Early Fusion in Encoder for Open-Domain Question Answering. In Proceedings of EMNLP 2022. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 4246–4260. https://doi.org/10.18653/v1/2022.emnlp-main.285
- Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In Proceedings of the 36th International Conference on Machine Learning. PMLR, 3744–3753.
- xFormers: A modular and hackable Transformer modelling library. https://github.com/facebookresearch/xformers.
- Pretrained Transformers for Text Ranking: BERT and Beyond. Springer International Publishing. https://doi.org/10.1007/978-3-031-02181-7
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In Proceedings of ICLR 2019.
- Pre-Training for Ad-hoc Retrieval: Hyperlink Is Also You Need. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, Virtual Event Queensland Australia, 1212–1221. https://doi.org/10.1145/3459637.3482286
- Sean MacAvaney and Luca Soldaini. 2023. One-Shot Labeling for Automatic Relevance Estimation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane Mothe, and Barbara Poblete (Eds.). ACM, New York, 2230–2235. https://doi.org/10.1145/3539618.3592032
- Adaptive Re-Ranking with a Corpus Graph. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, October 17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.). ACM, 1491–1500. https://doi.org/10.1145/3511808.3557231
- CEDR: Contextualized Embeddings for Document Ranking. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19). New York, NY, USA, 1101–1104. https://doi.org/10.1145/3331184.3331317
- Tom Minka and Stephen Robertson. 2008. Selection bias in the LETOR datasets. In Proceedings of SIGIR 2008 workshop on learning to rank for information retrieval, Vol. 2.
- A Systematic Evaluation of Transfer Learning and Pseudo-labeling with BERT-based Ranking Models. In Proceedings of SIGIR 2021. Association for Computing Machinery, New York, NY, USA, 2081–2085. https://doi.org/10.1145/3404835.3463093
- MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. In Proceedings of COCO@NeurIPS 2016.
- Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage Re-ranking with BERT. https://doi.org/10.48550/arXiv.1901.04085 arXiv:1901.04085
- Document Ranking with a Pretrained Sequence-to-Sequence Model. In Findings of the Association for Computational Linguistics: EMNLP 2020. Online, 708–718. https://doi.org/10.18653/v1/2020.findings-emnlp.63
- Multi-Stage Document Ranking with BERT. https://doi.org/10.48550/arXiv.1910.14424 arXiv:1910.14424
- SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, Virtual Event China, 499–508. https://doi.org/10.1145/3397271.3401104
- Permutation Equivariant Document Interaction Network for Neural Learning to Rank. In Proceedings of ICTIR 2020. 145–148. https://doi.org/10.1145/3409256.3409819
- PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of NeurIPS 2019, Vol. 32.
- Context-Aware Learning to Rank with Self-Attention. In Proceedings of ACM SIGIR Workshop on eCommerce (SIGIR eCom’20). https://sigir-ecom.github.io/ecom2020/ecom20Papers/paper18.pdf
- Squeezing Water from a Stone: A Bag of Tricks for Further Improving Cross-Encoder Effectiveness for Reranking.. In Proceedings of ECIR 2022. 655–670. https://doi.org/10.1007/978-3-030-99736-6_44
- The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models. arXiv:2101.05667 http://arxiv.org/abs/2101.05667
- RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models. arXiv. https://doi.org/10.48550/arXiv.2309.15088
- RankZephyr: Effective and Robust Zero-Shot Listwise Reranking Is a Breeze! arXiv. https://doi.org/10.48550/arXiv.2312.02724
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research 21 (2020), 140:1–140:67.
- Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. In Proceedings of EMNLP-IJCNLP 2019. 3980–3990. https://doi.org/10.18653/v1/D19-1410
- Overview of the TREC 2018 Precision Medicine Track. In Proceedings of TREC 2018 (NIST Special Publication, Vol. 500-331).
- Overview of the TREC 2017 Precision Medicine Track. In Proceedings of TREC 2017 (NIST Special Publication, Vol. 500-324).
- Okapi at TREC-3. In Proceedings of The Third Text REtrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4, 1994 (NIST Special Publication, Vol. 500–225). 109–126. http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
- In Defense of Cross-Encoders for Zero-Shot Retrieval. https://doi.org/10.48550/arXiv.2212.06121 arXiv:2212.06121
- ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction. https://doi.org/10.48550/arXiv.2112.01488 arXiv:2112.01488
- Reduce, Reuse, Recycle: Green Information Retrieval Research. In Proceedings of SIGIR 2022. 2825–2837. https://doi.org/10.1145/3477495.3531766
- Investigating the Effects of Sparse Attention on Cross-Encoders. arXiv. https://doi.org/10.48550/arXiv.2312.17649
- Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents. In Proceedings of EMNLP 2023. Association for Computational Linguistics, 14918–14937. https://doi.org/10.18653/v1/2023.emnlp-main.923
- TABLE: A Task-Adaptive BERT-based ListwisE Ranking Model for Document Retrieval. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM ’20). New York, NY, USA, 2233–2236. https://doi.org/10.1145/3340531.3412071
- Scaling Down, LiTting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder Models. arXiv. https://doi.org/10.48550/arXiv.2312.16098
- Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models. arXiv. https://doi.org/10.48550/arXiv.2310.07712
- Attention Is All You Need. In Advances in Neural Information Processing Systems, Vol. 30. Long Beach, CA, 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
- Ellen Voorhees. 2004. Overview of the TREC 2004 Robust Retrieval Track. In TREC.
- Ellen M. Voorhees. 1996. NIST TREC Disks 4 and 5: Retrieval Test Collections Document Set.
- TREC-COVID: constructing a pandemic information retrieval test collection. SIGIR Forum 54, 1 (2020), 1:1–1:12.
- Ellen M. Voorhees and Donna Harman. 1998. Overview of the Seventh Text Retrieval Conference (TREC-7). In TREC.
- Ellen M. Voorhees and Donna Harman. 1999. Overview of the Eight Text Retrieval Conference (TREC-8). In TREC.
- CORD-19: The Covid-19 Open Research Dataset. arXiv. https://doi.org/10.48550/arXiv.2004.10706
- HuggingFace’s Transformers: State-of-the-art Natural Language Processing. arXiv. https://doi.org/10.48550/arXiv.1910.03771
- Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval.. In Proceedings of ICLR 2021. https://openreview.net/forum?id=zeFrfgyZln
- LinkBERT: Pretraining Language Models with Document Links. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Dublin, Ireland, 8003–8016. https://doi.org/10.18653/v1/2022.acl-long.551
- Ranking Relevance in Yahoo Search. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Machinery, New York, NY, USA, 323–332. https://doi.org/10.1145/2939672.2939677
- RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses. https://doi.org/10.48550/arXiv.2210.10634 arXiv:2210.10634
- Ferdinand Schlatt (5 papers)
- Maik Fröbe (20 papers)
- Harrisen Scells (22 papers)
- Shengyao Zhuang (42 papers)
- Bevan Koopman (37 papers)
- Guido Zuccon (73 papers)
- Benno Stein (44 papers)
- Martin Potthast (64 papers)
- Matthias Hagen (33 papers)