Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Explainable Boosting Machine for Predicting Claim Severity and Frequency in Car Insurance (2503.21321v1)

Published 27 Mar 2025 in stat.AP, cs.LG, and stat.ML

Abstract: In a context of constant increase in competition and heightened regulatory pressure, accuracy, actuarial precision, as well as transparency and understanding of the tariff, are key issues in non-life insurance. Traditionally used generalized linear models (GLM) result in a multiplicative tariff that favors interpretability. With the rapid development of machine learning and deep learning techniques, actuaries and the rest of the insurance industry have adopted these techniques widely. However, there is a need to associate them with interpretability techniques. In this paper, our study focuses on introducing an Explainable Boosting Machine (EBM) model that combines intrinsically interpretable characteristics and high prediction performance. This approach is described as a glass-box model and relies on the use of a Generalized Additive Model (GAM) and a cyclic gradient boosting algorithm. It accounts for univariate and pairwise interaction effects between features and provides naturally explanations on them. We implement this approach on car insurance frequency and severity data and extensively compare the performance of this approach with classical competitors: a GLM, a GAM, a CART model and an Extreme Gradient Boosting (XGB) algorithm. Finally, we examine the interpretability of these models to capture the main determinants of claim costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube