Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Injecting Adrenaline into LLM Serving: Boosting Resource Utilization and Throughput via Attention Disaggregation (2503.20552v1)

Published 26 Mar 2025 in cs.DC and cs.LG

Abstract: In LLM serving systems, executing each request consists of two phases: the compute-intensive prefill phase and the memory-intensive decoding phase. To prevent performance interference between the two phases, current LLM serving systems typically adopt prefill-decoding disaggregation, where the two phases are split across separate machines. However, we observe this approach leads to significant resource underutilization. Specifically, prefill instances that are compute-intensive suffer from low memory utilization, while decoding instances that are memory-intensive experience low compute utilization. To address this problem, this paper proposes Adrenaline, an attention disaggregation and offloading mechanism designed to enhance resource utilization and performance in LLM serving systems. Adrenaline's key innovation lies in disaggregating part of the attention computation in the decoding phase and offloading them to prefill instances. The memory-bound nature of decoding-phase attention computation inherently enables an effective offloading strategy, yielding two complementary advantages: 1) improved memory capacity and bandwidth utilization in prefill instances, and 2) increased decoding batch sizes that enhance compute utilization in decoding instances, collectively boosting overall system performance. Adrenaline achieves these gains through three key techniques: low-latency decoding synchronization, resource-efficient prefill colocation, and load-aware offloading scheduling. Experimental results show that Adrenaline achieves 2.28x higher memory capacity and 2.07x better memory bandwidth utilization in prefill instances, up to 1.67x improvements in compute utilization for decoding instances, and 1.68x higher overall inference throughput compared to state-of-the-art systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com