Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unifying Structural Proximity and Equivalence for Enhanced Dynamic Network Embedding (2503.19926v1)

Published 14 Mar 2025 in cs.SI and cs.LG

Abstract: Dynamic network embedding methods transform nodes in a dynamic network into low-dimensional vectors while preserving network characteristics, facilitating tasks such as node classification and community detection. Several embedding methods have been proposed to capture structural proximity among nodes in a network, where densely connected communities are preserved, while others have been proposed to preserve structural equivalence among nodes, capturing their structural roles regardless of their relative distance in the network. However, most existing methods that aim to preserve both network characteristics mainly focus on static networks and those designed for dynamic networks do not explicitly account for inter-snapshot structural properties. This paper proposes a novel unifying dynamic network embedding method that simultaneously preserves both structural proximity and equivalence while considering inter-snapshot structural relationships in a dynamic network. Specifically, to define structural equivalence in a dynamic network, we use temporal subgraphs, known as dynamic graphlets, to capture how a node's neighborhood structure evolves over time. We then introduce a temporal-structural random walk to flexibly sample time-respecting sequences of nodes, considering both their temporal proximity and similarity in evolving structures. The proposed method is evaluated using five real-world networks on node classification where it outperforms benchmark methods, showing its effectiveness and flexibility in capturing various aspects of a network.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube