Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rank-Based Modeling for Universal Packets Compression in Multi-Modal Communications (2503.19097v1)

Published 24 Mar 2025 in cs.NI and eess.SP

Abstract: The rapid increase in networked systems and data transmission requires advanced data compression solutions to optimize bandwidth utilization and enhance network performance. This study introduces a novel byte-level predictive model using Transformer architecture, capable of handling the redundancy and diversity of data types in network traffic as byte sequences. Unlike traditional methods that require separate compressors for different data types, this unified approach sets new benchmarks and simplifies predictive modeling across various data modalities such as video, audio, images, and text, by processing them at the byte level. This is achieved by predicting subsequent byte probability distributions, encoding them into a sparse rank sequence using lossless entropy coding, and significantly reducing both data size and entropy. Experimental results show that our model achieves compression ratios below 50%, while offering models of various sizes tailored for different communication devices. Additionally, we successfully deploy these models on a range of edge devices and servers, demonstrating their practical applicability and effectiveness in real-world network scenarios. This approach significantly enhances data throughput and reduces bandwidth demands, making it particularly valuable in resource-constrained environments like the Internet of Things sensor networks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.