Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Benign Overfitting with Quantum Kernels (2503.17020v1)

Published 21 Mar 2025 in quant-ph, cs.LG, and stat.ML

Abstract: Quantum kernels quantify similarity between data points by measuring the inner product between quantum states, computed through quantum circuit measurements. By embedding data into quantum systems, quantum kernel feature maps, that may be classically intractable to compute, could efficiently exploit high-dimensional Hilbert spaces to capture complex patterns. However, designing effective quantum feature maps remains a major challenge. Many quantum kernels, such as the fidelity kernel, suffer from exponential concentration, leading to near-identity kernel matrices that fail to capture meaningful data correlations and lead to overfitting and poor generalization. In this paper, we propose a novel strategy for constructing quantum kernels that achieve good generalization performance, drawing inspiration from benign overfitting in classical machine learning. Our approach introduces the concept of local-global quantum kernels, which combine two complementary components: a local quantum kernel based on measurements of small subsystems and a global quantum kernel derived from full-system measurements. Through numerical experiments, we demonstrate that local-global quantum kernels exhibit benign overfitting, supporting the effectiveness of our approach in enhancing quantum kernel methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.