Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models (2503.16566v1)

Published 20 Mar 2025 in cs.CV

Abstract: The rapid evolution of Large Vision-LLMs (LVLMs) has highlighted the necessity for comprehensive evaluation frameworks that assess these models across diverse dimensions. While existing benchmarks focus on specific aspects such as perceptual abilities, cognitive capabilities, and safety against adversarial attacks, they often lack the breadth and depth required to provide a holistic understanding of LVLMs' strengths and limitations. To address this gap, we introduce REVAL, a comprehensive benchmark designed to evaluate the \textbf{RE}liability and \textbf{VAL}ue of LVLMs. REVAL encompasses over 144K image-text Visual Question Answering (VQA) samples, structured into two primary sections: Reliability, which assesses truthfulness (\eg, perceptual accuracy and hallucination tendencies) and robustness (\eg, resilience to adversarial attacks, typographic attacks, and image corruption), and Values, which evaluates ethical concerns (\eg, bias and moral understanding), safety issues (\eg, toxicity and jailbreak vulnerabilities), and privacy problems (\eg, privacy awareness and privacy leakage). We evaluate 26 models, including mainstream open-source LVLMs and prominent closed-source models like GPT-4o and Gemini-1.5-Pro. Our findings reveal that while current LVLMs excel in perceptual tasks and toxicity avoidance, they exhibit significant vulnerabilities in adversarial scenarios, privacy preservation, and ethical reasoning. These insights underscore critical areas for future improvements, guiding the development of more secure, reliable, and ethically aligned LVLMs. REVAL provides a robust framework for researchers to systematically assess and compare LVLMs, fostering advancements in the field.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube