Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Accelerating Transient CFD through Machine Learning-Based Flow Initialization (2503.15766v3)

Published 20 Mar 2025 in cs.LG and physics.flu-dyn

Abstract: Transient computational fluid dynamics (CFD) simulations are essential for many industrial applications, but suffer from high compute costs relative to steady-state simulations. This is due to the need to: (a) reach statistical steadiness by physically advecting errors in the initial field sufficiently far downstream, and (b) gather a sufficient sample of fluctuating flow data to estimate time-averaged quantities of interest. We present a machine learning-based initialization method that aims to reduce the cost of transient solve by providing more accurate initial fields. Through a case study in automotive aerodynamics on a 17M-cell unsteady incompressible RANS simulation, we evaluate three proposed ML-based initialization strategies against existing methods. Here, we demonstrate 50% reductions in time-to-convergence compared to traditional uniform and potential flow-based initializations. Two ML-based initialization strategies are recommended for general use: (1) a hybrid method combining ML predictions with potential flow solutions, and (2) an approach integrating ML predictions with uniform flow. Both strategies enable CFD solvers to achieve convergence times comparable to computationally-expensive steady RANS initializations, while requiring far less wall-clock time to compute the initialization field. Notably, these improvements are achieved using an ML model trained on a different dataset of diverse automotive geometries, demonstrating generalization capabilities relevant to specific industrial application areas. Because this Hybrid-ML workflow only modifies the inputs to an existing CFD solver, rather than modifying the solver itself, it can be applied to existing CFD workflows with relatively minimal changes; this provides a practical approach to accelerating industrial CFD simulations using existing ML surrogate models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube