Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

aiXcoder-7B-v2: Training LLMs to Fully Utilize the Long Context in Repository-level Code Completion (2503.15301v1)

Published 19 Mar 2025 in cs.SE

Abstract: Repository-level code completion aims to complete code based on the long contexts of the repository. Existing studies extract long contexts from the repository as inputs and leverage LLMs to generate code. However, we reveal a severe limitation of LLMs, i.e., LLMs may ignore the information within long contexts in code completion. In other words, even the contexts contain useful information (e.g., relevant APIs or similar code), LLMs may fail to utilize this information. We think this limitation is caused by an inherent bias in LLMs, i.e., relying on nearby contexts and ignoring long-range contexts. To address this, we propose a novel fine-tuning approach named CoLT. The core idea of CoLT is to provide explicit supervision signals, which emphasize that long-range contexts may hold relevant information. Specifically, CoLT proposes a reinforcement learning-based training, which explicitly encourages models to utilize the information within long contexts and punishes models for ignoring long contexts. To support CoLT, we release CoLT-132K, a large-scale dataset with 132k samples across four languages, each containing long-context inputs. We apply CoLT to a popular LLM - aiXcoder-7B and release aiXcoder-7B-v2. We conduct extensive experiments on CoLT-132K and a public benchmark - CrossCodeEval. Our experiments yield the results: 1. Effectiveness. CoLT substantially improves aiXcoder-7B. aiXcoder-7B-v2 outperforms aiXcoder-7B by up to 44% in exact match. aiXcoder-7B-v2 becomes the state-of-the-art 7B model in code completion and even surpasses larger models. 2. Generalizability. The capability learned by CoLT can generalize to new languages. Besides, CoLT is model-agnostic and effectively improves multiple LLMs. 3. Enhanced Context Utilization Capability. CoLT significantly improves the capability of LLMs in utilizing the relevant information within long contexts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.