Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Bounds for Adversarial Constrained Online Convex Optimization (2503.13366v4)

Published 17 Mar 2025 in cs.LG, cs.DS, math.OC, and stat.ML

Abstract: Constrained Online Convex Optimization (COCO) can be seen as a generalization of the standard Online Convex Optimization (OCO) framework. At each round, a cost function and constraint function are revealed after a learner chooses an action. The goal is to minimize both the regret and cumulative constraint violation (CCV) against an adaptive adversary. We show for the first time that is possible to obtain the optimal $O(\sqrt{T})$ bound on both regret and CCV, improving the best known bounds of $O \left( \sqrt{T} \right)$ and $\tilde{O} \left( \sqrt{T} \right)$ for the regret and CCV, respectively. Based on a new surrogate loss function enforcing a minimum penalty on the constraint function, we demonstrate that both the Follow-the-Regularized-Leader and the Online Gradient Descent achieve the optimal bounds.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com