Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$O(\sqrt{T})$ Static Regret and Instance Dependent Constraint Violation for Constrained Online Convex Optimization (2502.05019v1)

Published 7 Feb 2025 in cs.LG and cs.DS

Abstract: The constrained version of the standard online convex optimization (OCO) framework, called COCO is considered, where on every round, a convex cost function and a convex constraint function are revealed to the learner after it chooses the action for that round. The objective is to simultaneously minimize the static regret and cumulative constraint violation (CCV). An algorithm is proposed that guarantees a static regret of $O(\sqrt{T})$ and a CCV of $\min{\cV, O(\sqrt{T}\log T) }$, where $\cV$ depends on the distance between the consecutively revealed constraint sets, the shape of constraint sets, dimension of action space and the diameter of the action space. For special cases of constraint sets, $\cV=O(1)$. Compared to the state of the art results, static regret of $O(\sqrt{T})$ and CCV of $O(\sqrt{T}\log T)$, that were universal, the new result on CCV is instance dependent, which is derived by exploiting the geometric properties of the constraint sets.

Summary

We haven't generated a summary for this paper yet.