SFMNet: Sparse Focal Modulation for 3D Object Detection (2503.12093v1)
Abstract: We propose SFMNet, a novel 3D sparse detector that combines the efficiency of sparse convolutions with the ability to model long-range dependencies. While traditional sparse convolution techniques efficiently capture local structures, they struggle with modeling long-range relationships. However, capturing long-range dependencies is fundamental for 3D object detection. In contrast, transformers are designed to capture these long-range dependencies through attention mechanisms. But, they come with high computational costs, due to their quadratic query-key-value interactions. Furthermore, directly applying attention to non-empty voxels is inefficient due to the sparse nature of 3D scenes. Our SFMNet is built on a novel Sparse Focal Modulation (SFM) module, which integrates short- and long-range contexts with linear complexity by leveraging a new hierarchical sparse convolution design. This approach enables SFMNet to achieve high detection performance with improved efficiency, making it well-suited for large-scale LiDAR scenes. We show that our detector achieves state-of-the-art performance on autonomous driving datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.