Simple Hamiltonians for Matrix Product State models (2503.10767v1)
Abstract: Matrix Product States (MPS) and Tensor Networks provide a general framework for the construction of solvable models. The best-known example is the Affleck-Kennedy-Lieb-Tasaki (AKLT) model, which is the ground state of a 2-body nearest-neighbor parent Hamiltonian. We show that such simple parent Hamiltonians for MPS models are, in fact, much more prevalent than hitherto known: The existence of a single example with a simple Hamiltonian for a given choice of dimensions already implies that any generic MPS with those dimensions possesses an equally simple Hamiltonian. We illustrate our finding by discussing a number of models with nearest-neighbor parent Hamiltonians, which generalize the AKLT model on various levels.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.