Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Improving RAG Retrieval via Propositional Content Extraction: a Speech Act Theory Approach (2503.10654v1)

Published 7 Mar 2025 in cs.CL, cs.AI, and cs.IR

Abstract: When users formulate queries, they often include not only the information they seek, but also pragmatic markers such as interrogative phrasing or polite requests. Although these speech act indicators communicate the user\textquotesingle s intent -- whether it is asking a question, making a request, or stating a fact -- they do not necessarily add to the core informational content of the query itself. This paper investigates whether extracting the underlying propositional content from user utterances -- essentially stripping away the linguistic markers of intent -- can improve retrieval quality in Retrieval-Augmented Generation (RAG) systems. Drawing upon foundational insights from speech act theory, we propose a practical method for automatically transforming queries into their propositional equivalents before embedding. To assess the efficacy of this approach, we conducted an experimental study involving 63 user queries related to a Brazilian telecommunications news corpus with precomputed semantic embeddings. Results demonstrate clear improvements in semantic similarity between query embeddings and document embeddings at top ranks, confirming that queries stripped of speech act indicators more effectively retrieve relevant content.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com