Simulating and Analysing Human Survey Responses with Large Language Models: A Case Study in Energy Stated Preference (2503.10652v2)
Abstract: Survey research plays a crucial role in studies by capturing consumer preferences and informing policy decisions. Stated preference (SP) surveys help researchers understand how individuals make trade-offs in hypothetical, potentially futuristic, scenarios. However, traditional methods are costly, time-consuming, and affected by respondent fatigue and ethical constraints. LLMs have shown remarkable capabilities in generating human-like responses, prompting interest in their use in survey research. This study investigates LLMs for simulating consumer choices in energy-related SP surveys and explores their integration into data collection and analysis workflows. Test scenarios were designed to assess the simulation performance of several LLMs (LLaMA 3.1, Mistral, GPT-3.5, DeepSeek-R1) at individual and aggregated levels, considering prompt design, in-context learning (ICL), chain-of-thought (CoT) reasoning, model types, integration with traditional choice models, and potential biases. While LLMs achieve accuracy above random guessing, performance remains insufficient for practical simulation use. Cloud-based LLMs do not consistently outperform smaller local models. DeepSeek-R1 achieves the highest average accuracy (77%) and outperforms non-reasoning LLMs in accuracy, factor identification, and choice distribution alignment. Previous SP choices are the most effective input; longer prompts with more factors reduce accuracy. Mixed logit models can support LLM prompt refinement. Reasoning LLMs show potential in data analysis by indicating factor significance, offering a qualitative complement to statistical models. Despite limitations, pre-trained LLMs offer scalability and require minimal historical data. Future work should refine prompts, further explore CoT reasoning, and investigate fine-tuning techniques.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.