Neural network-based identification of state-space switching nonlinear systems (2503.10114v1)
Abstract: We design specific neural networks (NNs) for the identification of switching nonlinear systems in the state-space form, which explicitly model the switching behavior and address the inherent coupling between system parameters and switching modes. This coupling is specifically addressed by leveraging the expectation-maximization (EM) framework. In particular, our technique will combine a moving window approach in the E-step to efficiently estimate the switching sequence, together with an extended Kalman filter (EKF) in the M-step to train the NNs with a quadratic convergence rate. Extensive numerical simulations, involving both academic examples and a battery charge management system case study, illustrate that our technique outperforms available ones in terms of parameter estimation accuracy, model fitting, and switching sequence identification.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.