Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Graph-based Full Event Interpretation: a graph neural network for event reconstruction in Belle II (2503.09401v2)

Published 12 Mar 2025 in hep-ex and physics.data-an

Abstract: In this work we present the Graph-based Full Event Interpretation (GraFEI), a machine learning model based on graph neural networks to inclusively reconstruct events in the Belle~II experiment. Belle~II is well suited to perform measurements of $B$ meson decays involving invisible particles (e.g. neutrinos) in the final state. The kinematical properties of such particles can be deduced from the energy-momentum imbalance obtained after reconstructing the companion $B$ meson produced in the event. This task is performed by reconstructing it either from all the particles in an event but the signal tracks, or using the Full Event Interpretation, an algorithm based on Boosted Decision Trees and limited to specific, hard-coded decay processes. A recent example involving the use of the aforementioned techniques is the search for the $B+ \to K+ \nu \bar \nu$ decay, that provided an evidence for this process at about 3 standard deviations. The GraFEI model is trained to predict the structure of the decay chain by exploiting the information from the detected final state particles only, without making use of any prior assumptions about the underlying event. By retaining only signal-like decay topologies, the model considerably reduces the amount of background while keeping a relatively high signal efficiency. The performances of the model when applied to the search for $B+ \to K+ \nu \bar \nu$ are presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube