Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rethinking Diffusion Model in High Dimension (2503.08643v2)

Published 11 Mar 2025 in stat.ML, cs.AI, cs.CV, and cs.LG

Abstract: Curse of Dimensionality is an unavoidable challenge in statistical probability models, yet diffusion models seem to overcome this limitation, achieving impressive results in high-dimensional data generation. Diffusion models assume that they can learn the statistical properties of the underlying probability distribution, enabling sampling from this distribution to generate realistic samples. But is this really how they work? To address this question, this paper conducts a detailed analysis of the objective function and inference methods of diffusion models, leading to several important conclusions that help answer the above question: 1) In high-dimensional sparse scenarios, the target of the objective function fitting degrades from a weighted sum of multiple samples to a single sample. 2) The mainstream inference methods can all be represented within a simple unified framework, without requiring statistical concepts such as Markov chains and SDE, while aligning with the degraded objective function. 3) Guided by this simple framework, more efficient inference methods can be discovered.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Reddit Logo Streamline Icon: https://streamlinehq.com