Attention Hijackers: Detect and Disentangle Attention Hijacking in LVLMs for Hallucination Mitigation (2503.08216v2)
Abstract: Despite their success, Large Vision-LLMs (LVLMs) remain vulnerable to hallucinations. While existing studies attribute the cause of hallucinations to insufficient visual attention to image tokens, our findings indicate that hallucinations also arise from interference from instruction tokens during decoding. Intuitively, certain instruction tokens continuously distort LVLMs' visual perception during decoding, hijacking their visual attention toward less discriminative visual regions. This distortion prevents them integrating broader contextual information from images, ultimately leading to hallucinations. We term this phenomenon 'Attention Hijacking', where disruptive instruction tokens act as 'Attention Hijackers'. To address this, we propose a novel, training-free strategy namely Attention HIjackers Detection and Disentanglement (AID), designed to isolate the influence of Hijackers, enabling LVLMs to rely on their context-aware intrinsic attention map. Specifically, AID consists of three components: First, Attention Hijackers Detection identifies Attention Hijackers by calculating instruction-driven visual salience. Next, Attention Disentanglement mechanism is proposed to mask the visual attention of these identified Hijackers, and thereby mitigate their disruptive influence on subsequent tokens. Finally, Re-Disentanglement recalculates the balance between instruction-driven and image-driven visual salience to avoid over-masking effects. Extensive experiments demonstrate that AID significantly reduces hallucination across various LVLMs on several benchmarks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.