Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

H3PIMAP: A Heterogeneity-Aware Multi-Objective DNN Mapping Framework on Electronic-Photonic Processing-in-Memory Architectures (2503.07778v1)

Published 10 Mar 2025 in cs.AR and cs.ET

Abstract: The future of AI acceleration demands a paradigm shift beyond the limitations of purely electronic or photonic architectures. Photonic analog computing delivers unmatched speed and parallelism but struggles with data movement, robustness, and precision. Electronic processing-in-memory (PIM) enables energy-efficient computing by co-locating storage and computation but suffers from endurance and reconfiguration constraints, limiting it to static weight mapping. Neither approach alone achieves the balance needed for adaptive, efficient AI. To break this impasse, we study a hybrid electronic-photonic-PIM computing architecture and introduce H3PIMAP, a heterogeneity-aware mapping framework that seamlessly orchestrates workloads across electronic and optical tiers. By optimizing workload partitioning through a two-stage multi-objective exploration method, H3PIMAP harnesses light speed for high-throughput operations and PIM efficiency for memory-bound tasks. System-level evaluations on language and vision models show H3PIMAP achieves a 2.74x energy efficiency improvement and a 3.47x latency reduction compared to homogeneous architectures and naive mapping strategies. This proposed framework lays the foundation for hybrid AI accelerators, bridging the gap between electronic and photonic computation for next-generation efficiency and scalability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.