Dynamics of Matrix Product States in the Heisenberg Picture: Projectivity, Ergodicity, and Mixing (2503.06546v1)
Abstract: This paper introduces a Heisenberg picture approach to Matrix Product States (MPS), offering a rigorous yet intuitive framework to explore their structure and classification. MPS efficiently represent ground states of quantum many-body systems, with infinite MPS (iMPS) capturing long-range correlations and thermodynamic behavior. We classify MPS into projective and non-projective types, distinguishing those with finite correlation structures from those requiring ergodic quantum channels to define a meaningful limit. Using the Markov-Dobrushin inequality, we establish conditions for infinite-volume states and introduce ergodic and mixing MPS. As an application, we analyze the depolarizing MPS, highlighting its lack of finite correlations and the need for an alternative ergodic description. This work deepens the mathematical foundations of MPS and iMPS, providing new insights into entanglement, phase transitions, and quantum dynamics.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.