Natural Gradient Descent for Control (2503.06070v1)
Abstract: This paper bridges optimization and control, and presents a novel closed-loop control framework based on natural gradient descent, offering a trajectory-oriented alternative to traditional cost-function tuning. By leveraging the Fisher Information Matrix, we formulate a preconditioned gradient descent update that explicitly shapes system trajectories. We show that, in sharp contrast to traditional controllers, our approach provides flexibility to shape the system's low-level behavior. To this end, the proposed method parameterizes closed-loop dynamics in terms of stationary covariance and an unknown cost function, providing a geometric interpretation of control adjustments. We establish theoretical stability conditions. The simulation results on a rotary inverted pendulum benchmark highlight the advantages of natural gradient descent in trajectory shaping.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.