Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FAA-CLIP: Federated Adversarial Adaptation of CLIP (2503.05776v1)

Published 26 Feb 2025 in cs.LG and cs.AI

Abstract: Despite the remarkable performance of vision LLMs (VLMs) such as Contrastive Language Image Pre-training (CLIP), the large size of these models is a considerable obstacle to their use in federated learning (FL) systems where the parameters of local client models need to be transferred to a global server for aggregation. Another challenge in FL is the heterogeneity of data from different clients, which affects the generalization performance of the solution. In addition, natural pre-trained VLMs exhibit poor generalization ability in the medical datasets, suggests there exists a domain gap. To solve these issues, we introduce a novel method for the Federated Adversarial Adaptation (FAA) of CLIP. Our method, named FAA-CLIP, handles the large communication costs of CLIP using a light-weight feature adaptation module (FAM) for aggregation, effectively adapting this VLM to each client's data while greatly reducing the number of parameters to transfer. By keeping CLIP frozen and only updating the FAM parameters, our method is also computationally efficient. Unlike existing approaches, our FAA-CLIP method directly addresses the problem of domain shifts across clients via a domain adaptation (DA) module. This module employs a domain classifier to predict if a given sample is from the local client or the global server, allowing the model to learn domain-invariant representations. Extensive experiments on six different datasets containing both natural and medical images demonstrate that FAA-CLIP can generalize well on both natural and medical datasets compared to recent FL approaches. Our codes are available at https://github.com/AIPMLab/FAA-CLIP.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube