Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

GMLM: Bridging Graph Neural Networks and Language Models for Heterophilic Node Classification (2503.05763v3)

Published 24 Feb 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Integrating structured graph data with rich textual information from nodes poses a significant challenge, particularly for heterophilic node classification. Current approaches often struggle with computational costs or effective fusion of disparate modalities. We propose \textbf{Graph Masked LLM (GMLM)}, a novel architecture efficiently combining Graph Neural Networks (GNNs) with Pre-trained LLMs (PLMs). GMLM introduces three key innovations: (i) a \textbf{dynamic active node selection} strategy for scalable PLM text processing; (ii) a GNN-specific \textbf{contrastive pretraining stage} using soft masking with a learnable graph \texttt{[MASK]} token for robust structural representations; and (iii) a \textbf{dedicated fusion module} integrating RGCN-based GNN embeddings with PLM (GTE-Small & DistilBERT) embeddings. Extensive experiments on heterophilic benchmarks (Cornell, Wisconsin, Texas) demonstrate GMLM's superiority. Notably, GMLM(DistilBERT) achieves significant performance gains, improving accuracy by over \textbf{4.7\%} on Cornell and over \textbf{2.0\%} on Texas compared to the previous best-performing baselines. This work underscores the benefits of targeted PLM engagement and modality-specific pretraining for improved, efficient learning on text-rich graphs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

HackerNews

  1. Graph Masked Language Models (1 point, 0 comments)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube