Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Addressing Moral Uncertainty using Large Language Models for Ethical Decision-Making (2503.05724v1)

Published 17 Feb 2025 in cs.CY and cs.AI

Abstract: We present an ethical decision-making framework that refines a pre-trained reinforcement learning (RL) model using a task-agnostic ethical layer. Following initial training, the RL model undergoes ethical fine-tuning, where human feedback is replaced by feedback generated from a LLM. The LLM embodies consequentialist, deontological, virtue, social justice, and care ethics as moral principles to assign belief values to recommended actions during ethical decision-making. An ethical layer aggregates belief scores from multiple LLM-derived moral perspectives using Belief Jensen-Shannon Divergence and Dempster-Shafer Theory into probability scores that also serve as the shaping reward, steering the agent toward choices that align with a balanced ethical framework. This integrated learning framework helps the RL agent navigate moral uncertainty in complex environments and enables it to make morally sound decisions across diverse tasks. Our approach, tested across different LLM variants and compared with other belief aggregation techniques, demonstrates improved consistency, adaptability, and reduced reliance on handcrafted ethical rewards. This method is especially effective in dynamic scenarios where ethical challenges arise unexpectedly, making it well-suited for real-world applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.