Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

SCSA: A Plug-and-Play Semantic Continuous-Sparse Attention for Arbitrary Semantic Style Transfer (2503.04119v1)

Published 6 Mar 2025 in cs.CV

Abstract: Attention-based arbitrary style transfer methods, including CNN-based, Transformer-based, and Diffusion-based, have flourished and produced high-quality stylized images. However, they perform poorly on the content and style images with the same semantics, i.e., the style of the corresponding semantic region of the generated stylized image is inconsistent with that of the style image. We argue that the root cause lies in their failure to consider the relationship between local regions and semantic regions. To address this issue, we propose a plug-and-play semantic continuous-sparse attention, dubbed SCSA, for arbitrary semantic style transfer -- each query point considers certain key points in the corresponding semantic region. Specifically, semantic continuous attention ensures each query point fully attends to all the continuous key points in the same semantic region that reflect the overall style characteristics of that region; Semantic sparse attention allows each query point to focus on the most similar sparse key point in the same semantic region that exhibits the specific stylistic texture of that region. By combining the two modules, the resulting SCSA aligns the overall style of the corresponding semantic regions while transferring the vivid textures of these regions. Qualitative and quantitative results prove that SCSA enables attention-based arbitrary style transfer methods to produce high-quality semantic stylized images.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.