Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Hierarchical Re-ranker Retriever (HRR) (2503.02401v1)

Published 4 Mar 2025 in cs.IR and cs.CL

Abstract: Retrieving the right level of context for a given query is a perennial challenge in information retrieval - too large a chunk dilutes semantic specificity, while chunks that are too small lack broader context. This paper introduces the Hierarchical Re-ranker Retriever (HRR), a framework designed to achieve both fine-grained and high-level context retrieval for LLM applications. In HRR, documents are split into sentence-level and intermediate-level (512 tokens) chunks to maximize vector-search quality for both short and broad queries. We then employ a reranker that operates on these 512-token chunks, ensuring an optimal balance neither too coarse nor too fine for robust relevance scoring. Finally, top-ranked intermediate chunks are mapped to parent chunks (2048 tokens) to provide an LLM with sufficiently large context.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.