Measuring Intrinsic Dimension of Token Embeddings (2503.02142v1)
Abstract: In this study, we measure the Intrinsic Dimension (ID) of token embedding to estimate the intrinsic dimensions of the manifolds spanned by the representations, so as to evaluate their redundancy quantitatively compared to their extrinsic dimensionality. In detail, (1) we estimate the ID of token embeddings in small-scale LLMs and also modern LLMs, finding that the embedding spaces often reside on lower-dimensional manifolds compared to their extrinsic dimensionality; (2) we measure the ID across various model sizes and observe an increase in redundancy rates as the model scale grows; (3) we measure the dynamics of IDs during the training process, and find a rapid ID drop in the early stages of training. Moreover, (4) when LoRA is applied to the embedding layers, we observe a sudden drop in perplexity around the estimated IDs, suggesting that the ID can serve as a useful guideline for LoRA application.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.