Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Balanced segmentation of CNNs for multi-TPU inference (2503.01035v1)

Published 2 Mar 2025 in cs.DC

Abstract: In this paper, we propose different alternatives for convolutional neural networks (CNNs) segmentation, addressing inference processes on computing architectures composed by multiple Edge TPUs. Specifically, we compare the inference performance for a number of state-of-the-art CNN models taking as a reference inference times on one TPU and a compiler-based pipelined inference implementation as provided by the Google's Edge TPU compiler. Departing from a profiled-based segmentation strategy, we provide further refinements to balance the workload across multiple TPUs, leveraging their cooperative computing power, reducing work imbalance and alleviating the memory access bottleneck due to the limited amount of on-chip memory per TPU. The observed performance results compared with a single TPU yield superlinear speedups and accelerations up to 2.60x compared with the segmentation offered by the compiler targeting multiple TPUs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.