Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Investigating and Enhancing Vision-Audio Capability in Omnimodal Large Language Models (2503.00059v2)

Published 27 Feb 2025 in cs.CV and cs.LG

Abstract: Omnimodal LLMs (OLLMs) have shown significant progress in integrating vision and text, but still struggle with integrating vision and audio, often exhibiting suboptimal performance when processing audio queries compared to text queries. This disparity is primarily due to insufficient alignment between vision and audio modalities during training, leading to inadequate attention to visual information when using audio queries. To mitigate this issue, we propose a Self-Knowledge Distillation (Self-KD) training method where the vision-text component of the OLLM serves as the teacher and the vision-audio component as the student. This enables the model to process audio in a manner analogous to its text processing. Our experimental results demonstrate that Self-KD is an effective method for enhancing the vision-audio capabilities of OLLMs by learning from the vision-text components, which subsequently improves the interaction between audio and images and results in improved performance on multimodal tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.