from Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors (2503.00038v3)
Abstract: Current studies have exposed the risk of LLMs generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.