Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Transformers Learn to Implement Multi-step Gradient Descent with Chain of Thought (2502.21212v1)

Published 28 Feb 2025 in cs.LG and cs.AI

Abstract: Chain of Thought (CoT) prompting has been shown to significantly improve the performance of LLMs, particularly in arithmetic and reasoning tasks, by instructing the model to produce intermediate reasoning steps. Despite the remarkable empirical success of CoT and its theoretical advantages in enhancing expressivity, the mechanisms underlying CoT training remain largely unexplored. In this paper, we study the training dynamics of transformers over a CoT objective on an in-context weight prediction task for linear regression. We prove that while a one-layer linear transformer without CoT can only implement a single step of gradient descent (GD) and fails to recover the ground-truth weight vector, a transformer with CoT prompting can learn to perform multi-step GD autoregressively, achieving near-exact recovery. Furthermore, we show that the trained transformer effectively generalizes on the unseen data. With our technique, we also show that looped transformers significantly improve final performance compared to transformers without looping in the in-context learning of linear regression. Empirically, we demonstrate that CoT prompting yields substantial performance improvements.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube