Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Anticoncentration in Clifford Circuits and Beyond: From Random Tensor Networks to Pseudo-Magic States (2502.20455v1)

Published 27 Feb 2025 in quant-ph and cond-mat.stat-mech

Abstract: Anticoncentration describes how an ensemble of quantum states spreads over the allowed Hilbert space, leading to statistically uniform output probability distributions. In this work, we investigate the anticoncentration of random Clifford circuits toward the overlap distribution of random stabilizer states. Using exact analytical techniques and extensive numerical simulations based on Clifford replica tensor networks, we demonstrate that random Clifford circuits fully anticoncentrate in logarithmic circuit depth, namely higher-order moments of the overlap distribution converge to those of random stabilizer states. Moreover, we investigate the effect of introducing a controlled number of non-Clifford (magic) resources into Clifford circuits. We show that inserting a polylogarithmic in qudit number of $T$-states is sufficient to drive the overlap distribution toward the Porter-Thomas statistics, effectively recovering full quantum randomness. In short, this fact presents doped tensor networks and shallow Clifford circuits as pseudo-magic quantum states. Our results clarify the interplay between Clifford dynamics, magic resource injection, and quantum complexity, with implications for quantum circuit sampling and benchmarking of computational quantum advantage.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.