Dynamical Magic Transitions in Monitored Clifford+T Circuits (2312.00132v3)
Abstract: The classical simulation of highly-entangling quantum dynamics is conjectured to be generically hard. Thus, recently discovered measurement-induced transitions between highly entangling and low-entanglement dynamics are phase transitions in classical simulability. Here, we study simulability transitions beyond entanglement: noting that some highly-entangling dynamics (e.g., integrable systems or Clifford circuits) are easy to classically simulate, thus requiring "magic"--a subtle form of quantum resource--to achieve computational hardness, we ask how the dynamics of magic competes with measurements. We study the resulting "dynamical magic transitions" focusing on random monitored Clifford circuits doped by T gates (injecting magic). We identify dynamical "stabilizer-purification"--the collapse of a superposition of stabilizer states by measurements--as the mechanism driving this transition. We find cases where transitions in magic and entanglement coincide, but also others with a magic and simulability transition in a highly (volume-law) entangled phase. In establishing our results, we use Pauli-based computation, a scheme distilling the quantum essence of the dynamics to a magic state register subject to mutually commuting measurements. We link stabilizer-purification to "magic fragmentation" wherein these measurements separate into disjoint, O(1)-weight blocks, and relate this to the spread of magic in the original circuit becoming arrested.
- R. P. Feynman, Simulating physics with computers, Int J Theor Phys 21, 467 (1982).
- G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91, 147902 (2003).
- G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett. 93, 040502 (2004).
- I. L. Markov and Y. Shi, Simulating quantum computation by contracting tensor networks, SIAM Journal on Computing 38, 963 (2008).
- A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, Random quantum circuits anticoncentrate in log depth, PRX Quantum 3, 010333 (2022).
- T. B. Wahl and S. Strelchuk, Simulating quantum circuits using efficient tensor network contraction algorithms with subexponential upper bound, Phys. Rev. Lett. 131, 180601 (2023).
- B. M. Terhal and D. P. DiVincenzo, Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin games (2004), arXiv:quant-ph/0205133 .
- F. Pan, K. Chen, and P. Zhang, Solving the sampling problem of the sycamore quantum circuits, Phys. Rev. Lett. 129, 090502 (2022).
- F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019).
- Y. Wu et al., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett. 127, 180501 (2021).
- D. Hangleiter and J. Eisert, Computational advantage of quantum random sampling, Rev. Mod. Phys. 95, 035001 (2023).
- B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits, Phys. Rev. A 65, 032325 (2002).
- S. Bravyi, Lagrangian representation for fermionic linear optics (2004), arXiv:quant-ph/0404180 .
- D. Gottesman, The heisenberg representation of quantum computers (1998), arXiv:quant-ph/9807006 .
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
- D. Aharonov, Quantum to classical phase transition in noisy quantum computers, Phys. Rev. A 62, 062311 (2000).
- Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
- Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
- B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
- Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
- R. Trivedi and J. I. Cirac, Transitions in computational complexity of continuous-time local open quantum dynamics, Phys. Rev. Lett. 129, 260405 (2022).
- X. Zhou, D. W. Leung, and I. L. Chuang, Methodology for quantum logic gate construction, Phys. Rev. A 62, 052316 (2000).
- S. Bravyi and A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
- E. T. Campbell and D. E. Browne, Bound states for magic state distillation in fault-tolerant quantum computation, Phys. Rev. Lett. 104, 030503 (2010).
- S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and quantum computational resources, Phys. Rev. X 6, 021043 (2016).
- M. Howard and E. Campbell, Application of a resource theory for magic states to fault-tolerant quantum computing, Phys. Rev. Lett. 118, 090501 (2017).
- Z.-W. Liu and A. Winter, Many-body quantum magic, PRX Quantum 3, 020333 (2022).
- T. Haug and M. S. Kim, Scalable measures of magic resource for quantum computers, PRX Quantum 4, 010301 (2023).
- L. Leone, S. F. E. Oliviero, and A. Hamma, Stabilizer rényi entropy, Phys. Rev. Lett. 128, 050402 (2022).
- S. True and A. Hamma, Transitions in Entanglement Complexity in Random Circuits, Quantum 6, 818 (2022).
- S. F. Oliviero, L. Leone, and A. Hamma, Transitions in entanglement complexity in random quantum circuits by measurements, Physics Letters A 418, 127721 (2021).
- K. Bu and D. E. Koh, Efficient classical simulation of clifford circuits with nonstabilizer input states, Phys. Rev. Lett. 123, 170502 (2019).
- C. D. White, C. J. Cao, and B. Swingle, Conformal field theories are magical, Phys. Rev. B 103, 075145 (2021).
- S. F. E. Oliviero, L. Leone, and A. Hamma, Magic-state resource theory for the ground state of the transverse-field ising model, Phys. Rev. A 106, 042426 (2022).
- T. Haug and L. Piroli, Quantifying nonstabilizerness of matrix product states, Phys. Rev. B 107, 035148 (2023a).
- T. Haug and L. Piroli, Stabilizer entropies and nonstabilizerness monotones, Quantum 7, 1092 (2023b).
- T. J. Sewell and C. D. White, Mana and thermalization: Probing the feasibility of near-clifford hamiltonian simulation, Phys. Rev. B 106, 125130 (2022).
- K. Goto, T. Nosaka, and M. Nozaki, Chaos by magic (2021), arXiv:2112.14593 [hep-th] .
- P. S. Tarabunga, Critical behaviours of non-stabilizerness in quantum spin chains (2023), arXiv:2309.00676 .
- P. S. Tarabunga and C. Castelnovo, Magic in generalized rokhsar-kivelson wavefunctions (2023), arXiv:2311.08463 .
- X. Turkeshi, M. Schirò, and P. Sierant, Measuring nonstabilizerness via multifractal flatness, Phys. Rev. A 108, 042408 (2023).
- S. Bravyi and D. Gosset, Improved classical simulation of quantum circuits dominated by clifford gates, Phys. Rev. Lett. 116, 250501 (2016).
- H. Qassim, H. Pashayan, and D. Gosset, Improved upper bounds on the stabilizer rank of magic states, Quantum 5, 606 (2021).
- M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (CUP, 2010).
- C. K. McLauchlan and B. Béri, Fermion-parity-based computation and its majorana-zero-mode implementation, Phys. Rev. Lett. 128, 180504 (2022).
- J. Cardy, Finite-Size Scaling, Volume 2 (North Holland, 1988).
- A. Sorge, pyfssa 0.7.6 (2015).
- M. E. Fisher and M. N. Barber, Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett. 28, 1516 (1972).
- D. Gottesman, Stabilizer codes and quantum error correction (1997), arXiv:quant-ph/9705052 .
- M. B. Hastings and J. Haah, Dynamically Generated Logical Qubits, Quantum 5, 564 (2021).
- C. T. Chubb and S. T. Flammia, Statistical mechanical models for quantum codes with correlated noise, Ann. Henri Poincaré D 8, 269 (2021).
- Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev. B 103, 104306 (2021).
- F. Venn, J. Behrends, and B. Béri, Coherent-error threshold for surface codes from majorana delocalization, Phys. Rev. Lett. 131, 060603 (2023).
- D. Greenbaum and Z. Dutton, Modeling coherent errors in quantum error correction, Quantum Sci. Technol. 3, 015007 (2017).
- E. Huang, A. C. Doherty, and S. Flammia, Performance of quantum error correction with coherent errors, Phys. Rev. A 99, 022313 (2019).
- J. K. Iverson and J. Preskill, Coherence in logical quantum channels, New J. of Phys. 22, 073066 (2020).
- O. Lunt, M. Szyniszewski, and A. Pal, Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional clifford circuits, Phys. Rev. B 104, 155111 (2021).
- S. Bravyi and D. Maslov, Hadamard-free circuits expose the structure of the clifford group, IEEE Transactions on Information Theory 67, 4546 (2021).
- W. Dür, G. Vidal, and J. I. Cirac, Optimal conversion of nonlocal unitary operations, Phys. Rev. Lett. 89, 057901 (2002).
- G. Grimmett, Probability on Graphs: Random Processes on Graphs and Lattices, 2nd ed. (CUP, 2018).
- G. R. Grimmett and I. Manolescu, Inhomogeneous bond percolation on square, triangular and hexagonal lattices, The Annals of Probability 41, 2990 (2013a).
- G. Grimmett, Percolation, 2nd ed. (Springer, 1999).
- C. Bezuidenhout and G. Grimmett, Exponential Decay for Subcritical Contact and Percolation Processes, The Annals of Probability 19, 984 (1991).
- G. R. Grimmett and I. Manolescu, Universality for bond percolation in two dimensions, The Annals of Probability 41, 3261 (2013b).
- T. J. Yoder, A generalization of the stabilizer formalism for simulating arbitrary quantum circuits, unpublished (2012) .
- F. C. R. Peres and E. F. Galvão, Quantum circuit compilation and hybrid computation using Pauli-based computation, Quantum 7, 1126 (2023).
- Çetin Kaya Koç and S. N. Arachchige, A fast algorithm for gaussian elimination over gf(2) and its implementation on the gapp, J. Parallel Distributed Comput. 13, 118-122 (1991).
Collections
Sign up for free to add this paper to one or more collections.