Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

VCT: Training Consistency Models with Variational Noise Coupling (2502.18197v2)

Published 25 Feb 2025 in cs.LG and cs.CV

Abstract: Consistency Training (CT) has recently emerged as a strong alternative to diffusion models for image generation. However, non-distillation CT often suffers from high variance and instability, motivating ongoing research into its training dynamics. We propose Variational Consistency Training (VCT), a flexible and effective framework compatible with various forward kernels, including those in flow matching. Its key innovation is a learned noise-data coupling scheme inspired by Variational Autoencoders, where a data-dependent encoder models noise emission. This enables VCT to adaptively learn noise-todata pairings, reducing training variance relative to the fixed, unsorted pairings in classical CT. Experiments on multiple image datasets demonstrate significant improvements: our method surpasses baselines, achieves state-of-the-art FID among non-distillation CT approaches on CIFAR-10, and matches SoTA performance on ImageNet 64 x 64 with only two sampling steps. Code is available at https://github.com/sony/vct.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com