Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Pauli measurements are not optimal for single-copy tomography (2502.18170v1)

Published 25 Feb 2025 in quant-ph, cs.CC, cs.IT, and math.IT

Abstract: Quantum state tomography is a fundamental problem in quantum computing. Given $n$ copies of an unknown $N$-qubit state $\rho \in \mathbb{C}{d \times d},d=2N$, the goal is to learn the state up to an accuracy $\epsilon$ in trace distance, with at least probability 0.99. We are interested in the copy complexity, the minimum number of copies of $\rho$ needed to fulfill the task. Pauli measurements have attracted significant attention due to their ease of implementation in limited settings. The best-known upper bound is $O(\frac{N \cdot 12N}{\epsilon2})$, and no non-trivial lower bound is known besides the general single-copy lower bound $\Omega(\frac{8n}{\epsilon2})$, achieved by hard-to-implement structured POVMs such as MUB, SIC-POVM, and uniform POVM. We have made significant progress on this long-standing problem. We first prove a stronger upper bound of $O(\frac{10N}{\epsilon2})$. To complement it with a lower bound of $\Omega(\frac{9.118N}{\epsilon2})$, which holds under adaptivity. To our knowledge, this demonstrates the first known separation between Pauli measurements and structured POVMs. The new lower bound is a consequence of a novel framework for adaptive quantum state tomography with measurement constraints. The main advantage over prior methods is that we can use measurement-dependent hard instances to prove tight lower bounds for Pauli measurements. Moreover, we connect the copy-complexity lower bound to the eigenvalues of the measurement information channel, which governs the measurement's capacity to distinguish states. To demonstrate the generality of the new framework, we obtain tight-bounds for adaptive quantum tomography with $k$-outcome measurements, where we recover existing results and establish new ones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube