Generative AI-enabled Wireless Communications for Robust Low-Altitude Economy Networking (2502.18118v1)
Abstract: Low-Altitude Economy Networks (LAENets) have emerged as significant enablers of social activities, offering low-altitude services such as the transportation of packages, groceries, and medical supplies. Unlike traditional terrestrial networks, LAENets are characterized by control mechanisms and ever-changing operational factors, which make them more complex and susceptible to vulnerabilities. As applications of LAENet continue to expand, robustness of these systems becomes crucial. In this paper, we investigate a novel application of Generative Artificial Intelligence (GenAI) to improve the robustness of LAENets. We conduct a systematic analysis of robustness requirements for LAENets, complemented by a comprehensive review of robust Quality of Service (QoS) metrics from the wireless physical layer perspective. We then investigate existing GenAI-enabled approaches for robustness enhancement. This leads to our proposal of a novel diffusion-based optimization framework with a Mixture of Expert (MoE)-transformer actor network. In the robust beamforming case study, the proposed framework demonstrates its effectiveness by optimizing beamforming under uncertainties, achieving a more than 44% increase in the worst-case achievable secrecy rate. These findings highlight the significant potential of GenAI in strengthening LAENet robustness.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.