Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Progressive Local Alignment for Medical Multimodal Pre-training (2502.18047v2)

Published 25 Feb 2025 in cs.CV and cs.LG

Abstract: Local alignment between medical images and text is essential for accurate diagnosis, though it remains challenging due to the absence of natural local pairings and the limitations of rigid region recognition methods. Traditional approaches rely on hard boundaries, which introduce uncertainty, whereas medical imaging demands flexible soft region recognition to handle irregular structures. To overcome these challenges, we propose the Progressive Local Alignment Network (PLAN), which designs a novel contrastive learning-based approach for local alignment to establish meaningful word-pixel relationships and introduces a progressive learning strategy to iteratively refine these relationships, enhancing alignment precision and robustness. By combining these techniques, PLAN effectively improves soft region recognition while suppressing noise interference. Extensive experiments on multiple medical datasets demonstrate that PLAN surpasses state-of-the-art methods in phrase grounding, image-text retrieval, object detection, and zero-shot classification, setting a new benchmark for medical image-text alignment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.