Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Gabor-Enhanced Physics-Informed Neural Networks for Fast Simulations of Acoustic Wavefields (2502.17134v2)

Published 24 Feb 2025 in physics.geo-ph and cs.LG

Abstract: Physics-Informed Neural Networks (PINNs) have gained increasing attention for solving partial differential equations, including the Helmholtz equation, due to their flexibility and mesh-free formulation. However, their low-frequency bias limits their accuracy and convergence speed for high-frequency wavefield simulations. To alleviate these problems, we propose a simplified PINN framework that incorporates Gabor functions, designed to capture the oscillatory and localized nature of wavefields more effectively. Unlike previous attempts that rely on auxiliary networks to learn Gabor parameters, we redefine the network's task to map input coordinates to a custom Gabor coordinate system, simplifying the training process without increasing the number of trainable parameters compared to a simple PINN. We validate the proposed method across multiple velocity models, including the complex Marmousi and Overthrust models, and demonstrate its superior accuracy, faster convergence, and better robustness features compared to both traditional PINNs and earlier Gabor-based PINNs. Additionally, we propose an efficient integration of a Perfectly Matched Layer (PML) to enhance wavefield behavior near the boundaries. These results suggest that our approach offers an efficient and accurate alternative for scattered wavefield modeling and lays the groundwork for future improvements in PINN-based seismic applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.