Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Geometric Kolmogorov-Arnold Superposition Theorem (2502.16664v2)

Published 23 Feb 2025 in cs.LG

Abstract: The Kolmogorov-Arnold Theorem (KAT), or more generally, the Kolmogorov Superposition Theorem (KST), establishes that any non-linear multivariate function can be exactly represented as a finite superposition of non-linear univariate functions. Unlike the universal approximation theorem, which provides only an approximate representation without guaranteeing a fixed network size, KST offers a theoretically exact decomposition. The Kolmogorov-Arnold Network (KAN) was introduced as a trainable model to implement KAT, and recent advancements have adapted KAN using concepts from modern neural networks. However, KAN struggles to effectively model physical systems that require inherent equivariance or invariance geometric symmetries as $E(3)$ transformations, a key property for many scientific and engineering applications. In this work, we propose a novel extension of KAT and KAN to incorporate equivariance and invariance over various group actions, including $O(n)$, $O(1,n)$, $S_n$, and general $GL$, enabling accurate and efficient modeling of these systems. Our approach provides a unified approach that bridges the gap between mathematical theory and practical architectures for physical systems, expanding the applicability of KAN to a broader class of problems. We provide experimental validation on molecular dynamical systems and particle physics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube