Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Optimizing Input Data Collection for Ranking and Selection (2502.16659v1)

Published 23 Feb 2025 in stat.ME, math.OC, and stat.ML

Abstract: We study a ranking and selection (R&S) problem when all solutions share common parametric Bayesian input models updated with the data collected from multiple independent data-generating sources. Our objective is to identify the best system by designing a sequential sampling algorithm that collects input and simulation data given a budget. We adopt the most probable best (MPB) as the estimator of the optimum and show that its posterior probability of optimality converges to one at an exponential rate as the sampling budget increases. Assuming that the input parameters belong to a finite set, we characterize the $\epsilon$-optimal static sampling ratios for input and simulation data that maximize the convergence rate. Using these ratios as guidance, we propose the optimal sampling algorithm for R&S (OSAR) that achieves the $\epsilon$-optimal ratios almost surely in the limit. We further extend OSAR by adopting the kernel ridge regression to improve the simulation output mean prediction. This not only improves OSAR's finite-sample performance, but also lets us tackle the case where the input parameters lie in a continuous space with a strong consistency guarantee for finding the optimum. We numerically demonstrate that OSAR outperforms a state-of-the-art competitor.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)