Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stealing Training Data from Large Language Models in Decentralized Training through Activation Inversion Attack (2502.16086v1)

Published 22 Feb 2025 in cs.CR

Abstract: Decentralized training has become a resource-efficient framework to democratize the training of LLMs. However, the privacy risks associated with this framework, particularly due to the potential inclusion of sensitive data in training datasets, remain unexplored. This paper identifies a novel and realistic attack surface: the privacy leakage from training data in decentralized training, and proposes \textit{activation inversion attack} (AIA) for the first time. AIA first constructs a shadow dataset comprising text labels and corresponding activations using public datasets. Leveraging this dataset, an attack model can be trained to reconstruct the training data from activations in victim decentralized training. We conduct extensive experiments on various LLMs and publicly available datasets to demonstrate the susceptibility of decentralized training to AIA. These findings highlight the urgent need to enhance security measures in decentralized training to mitigate privacy risks in training LLMs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)