Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GenAI at the Edge: Comprehensive Survey on Empowering Edge Devices (2502.15816v1)

Published 19 Feb 2025 in cs.DC

Abstract: Generative Artificial Intelligence (GenAI) applies models and algorithms such as LLM and Foundation Model (FM) to generate new data. GenAI, as a promising approach, enables advanced capabilities in various applications, including text generation and image processing. In current practice, GenAI algorithms run mainly on the cloud server, leading to high latency and raising security concerns. Consequently, these challenges encourage the deployment of GenAI algorithms directly on edge devices. However, the large size of such models and their significant computational resource requirements pose obstacles when deploying them in resource-constrained systems. This survey provides a comprehensive overview of recent proposed techniques that optimize GenAI for efficient deployment on resource-constrained edge devices. For this aim, this work highlights three main categories for bringing GenAI to the edge: software optimization, hardware optimization, and frameworks. The main takeaways for readers of this survey will be a clear roadmap to design, implement, and refine GenAI systems for real-world implementation on edge devices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.