Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

AttentionEngine: A Versatile Framework for Efficient Attention Mechanisms on Diverse Hardware Platforms (2502.15349v1)

Published 21 Feb 2025 in cs.CL, cs.LG, and cs.PF

Abstract: Transformers and LLMs have revolutionized machine learning, with attention mechanisms at the core of their success. As the landscape of attention variants expands, so too do the challenges of optimizing their performance, particularly across different hardware platforms. Current optimization strategies are often narrowly focused, requiring extensive manual intervention to accommodate changes in model configurations or hardware environments. In this paper, we introduce AttentionEngine, a comprehensive framework designed to streamline the optimization of attention mechanisms across heterogeneous hardware backends. By decomposing attention computation into modular operations with customizable components, AttentionEngine enables flexible adaptation to diverse algorithmic requirements. The framework further automates kernel optimization through a combination of programmable templates and a robust cross-platform scheduling strategy. Empirical results reveal performance gains of up to 10x on configurations beyond the reach of existing methods. AttentionEngine offers a scalable, efficient foundation for developing and deploying attention mechanisms with minimal manual tuning. Our code has been open-sourced and is available at https://github.com/microsoft/AttentionEngine.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

An Examination of the "A" Framework for Efficient Attention Mechanisms

The paper "A: A Versatile Framework for Efficient Attention Mechanisms on Diverse Hardware Platforms" addresses the critical need for optimizing attention mechanisms, which are integral to the computational workflow of LLMs like transformers. The traditional approaches to optimizing these mechanisms are often labor-intensive and hardware-specific, which limits their adaptability and scalability across evolving computational and hardware environments.

The proposed framework, A, offers a comprehensive solution by abstracting attention mechanisms into two fundamental operations: relevance scoring and aggregation. This abstraction not only encapsulates the core of attention, allowing for a unified treatment of various attention designs, but it also facilitates the integration of user-defined modifications and row-wise normalization functions. This approach strikes a balance between flexibility and performance optimization.

A introduces customizable templates for designing diverse attention mechanisms, enabling users to adapt their computations to specific algorithmic requirements. The framework includes programmable templates and a cross-platform scheduling strategy that automates the kernel optimization process, allowing for adaptable mappings across distinct hardware configurations. A noteworthy contribution is the integration of online techniques in its parallel attention template, which efficiently manages row-wise normalization and ensures adaptability across input configurations. Additionally, A's recurrent attention pattern utilizes chunk parallelism to maximize tensor core utilization, demonstrating its proficiency in handling memory-efficient designs and sequence dependencies.

The empirical results presented in the paper show performance enhancements that reach up to a 10.4× speedup over configurations unsupported by existing solutions. This is achieved without the need for extensive manual tuning, highlighting A's capability to scale and generalize across a wide variety of attention mechanisms and hardware backends, including NVIDIA and AMD GPUs.

The implications of this research extend significantly within both theoretical and practical domains. Theoretically, A's abstraction provides a robust foundation for further exploration and innovation in attention mechanisms, potentially influencing next-generation neural network architectures. Practically, the automated optimization framework reduces development overheads and accelerates the deployment of LLMs, thereby broadening AI's applicability in various real-world scenarios.

Future developments in AI are likely to leverage frameworks like A to simplify and streamline the complex process of designing and optimizing neural models. This could lead to more efficient algorithms that maximize computational resources and adapt seamlessly to technological advancements in hardware, ultimately advancing the field of artificial intelligence.

In conclusion, this paper presents a significant contribution to the efficient implementation of attention mechanisms, positioning the A framework as a scalable foundation for future advancements in model training and inference across heterogeneous hardware platforms.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com