Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Supervised Screening and Regularized Factor-Based Method for Time Series Forecasting (2502.15275v1)

Published 21 Feb 2025 in econ.EM

Abstract: Factor-based forecasting using Principal Component Analysis (PCA) is an effective machine learning tool for dimension reduction with many applications in statistics, economics, and finance. This paper introduces a Supervised Screening and Regularized Factor-based (SSRF) framework that systematically addresses high-dimensional predictor sets through a structured four-step procedure integrating both static and dynamic forecasting mechanisms. The static approach selects predictors via marginal correlation screening and scales them using univariate predictive slopes, while the dynamic method screens and scales predictors based on time series regression incorporating lagged predictors. PCA then extracts latent factors from the scaled predictors, followed by LASSO regularization to refine predictive accuracy. In the simulation study, we validate the effectiveness of SSRF and identify its parameter adjustment strategies in high-dimensional data settings. An empirical analysis of macroeconomic indices in China demonstrates that the SSRF method generally outperforms several commonly used forecasting techniques in out-of-sample predictions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com